کاملترین فایل طراحی هتل (استانداردها و ضوابط)

تحقیق در مورد طراحی هتل در قالب پاورپوینت

دسته بندی: معماری

فرمت فایل: ppt

تعداد صفحات: 97

حجم فایل: 9.304 مگا بایت

این محصول پاورپوینت بسیار کاملی در مورد طراحی هتل ها، ضوابط واستانداردهای آن می باشد

تعداد صفحات این تحقیق بیش از 95 اسلاید بوده که شما به راحتی قادر به ویرایش و تغییرات و اضافه کردن موارد دلخواه تان می باشید
با این محصول به راحتی تحقیق وارائه خود را با موضوع طراحی هتل می توانید آماده نمایید

به امید لبخند رضایت بر لبان شما:)در صورت سفارش محصولات مشابه و سوالات احتمالی میتوانید با ایمیل diamond.kknn@yahoo.com ارتباط برقرار کنید

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


تحقیق در مورد مبحث تابع رشته ریاضی

هر دستة متشكل از دو عنصر با ترتیب معین را یك زوج مرتب گویند مانند زوچ مرتب (xy) كه x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 19
حجم فایل 184 کیلو بایت

مبحث تابع

تعریف زوج مرتب:
هر دستة متشكل از دو عنصر با ترتیب معین را یك زوج مرتب گویند. مانند زوچ مرتب (x,y) كه x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند و نمایش هندسی آن نقطه‌ای در صفحة مختصات قائم است كه طول آن برابر x و عرض آن برابر y است.
تساوی بین دو زوج مرتب:
دو زوج مرتب با یكدیگر مساوی‌اند اگر دو نقطه اگر مؤلفه‌های نظیر‌به‌نظیر آنها با هم برابر باشند یعنی:

مثال: از تساوی زیر مقادیر x,y را بیابید:

تعریف حاصل‌ضرب دكارتی دو مجموعه :
حاصلضرب دكارتی در مجموعه B,A كه با نماد نشان داده می‌شود عبارت است از مجموعه تمام زوج‌ مرتبه‌هائی كه مؤلفة اول آنها از A و مؤلفه دوم آنها از B باشد یعنی:

مثال: حاصلضرب دكارتی درهر یك از مثالهای زیر را بصورت مجموعه‌ای از زوجهای مرتب بنویسید و نمودار آن را در دستگاه محورهای مختصات قائم رسم نمائید:

(1

(2

نمودار حاصلضرب دكارتی مجموعه‌های داده شدة زیر را در دستگاه محورهای مختصات قائم رسم كنید.

ویژگی‌های حاصلضرب دكارتی مجموعه‌ها :

فضای دوبعدی ( صفحه) 3) , ,
4) , ,
5) مثال:
تضاد زوجهای مرتب:
تعریف ریاضی رابطه:
اگر B,A دو مجموعه دلخواه باشند هر زیرمجموعه از حاصلضرب دكارتی را یك رابطه از A در B گویند اگر f یك زیرمجموعه از باشد گویند. F یك رابطه از A در B است به عبارت دیگر رابطه Fمجموعه تمام زوج مرتب‌های است كه مؤلفه‌های اول و دوم آن با شرایطی خاص( قانون یا ضابطة خاص) به یكدیگر مربوط می‌شوند. به بیان دیگر رابطه f زیرمجموعه‌ای از است كه با ضابطه یا قانون خود مختص اول زوجهای مرتب را به مختص دوم آنها پیوند می‌دهد مانند رابطه پدر و فرزندی رابطه مالك و مستأجری رابطه عبد و مولا رابطه اعداد با مجذور آنها.
مفهوم تابع: تابع بیانگر چگونگی ارتباط مقدار یك كمیت(متغیر وابسته y= ) به مقدار یك كمیت دیگر( متغیر مستقل x= ) است مفهومی كه خواص آن، انواع آن، نمودار‌ آن حد و پیوستگی آن؛ مشتق و انتگرالگیری از آن و… نه تنها در ریاضیات بلكه درهمه علوم و فنون نقش مهمی ایفا می‌كند و در زندگی خود نیز به نمونه‌هایی برمی‌خوریم كه مقدار یك كمیتی( كمیت تابع) به مقدار كمیت دیگری( كمیت آزاد) وابسته است؛
مثال: متغیرهای وابسته (y) و متغیرهای مستقل(x) را در مثالهای زیر مشخص كنید:
1) افزایش طول یك فنر به وزنه‌ای كه به آن آویزان می‌شود بستگی دارد.
جواب: « افزایش طول فنر» = متغیر وابسته(y ) و « مقدار وزنه» = متغیر آزاد (x)
2) »هر كه بامش بیش، برفش بیشتر»
جواب:« مقدار برف انباشته‌شده روی پشت‌بام» = متغیر وابسته(y ) و« مساحت پشت‌بام»= متغیر آزاد
3) مقدار مكعب هر عددی به آن عدد وابسته است.
جواب: مكعب عدد«= متغیر وابسته(y ) و « خود عدد»= متغیر مستقل(x )
تذكر: با توجه به اینكه هر تابع یك رابطه است( عكس این مطلب درست نیست یعنی هر رابط ممكن است تابع نباشد.
تعریف تابع:
اگر رابطهf بصورت مجموعه زوجهای مرتب باشد آنگاه رابطةf را تابع گویندهرگاه هیچ دوزوج مرتب متمایزی در f دارای مؤلفه‌های اول یكسان نباشند یعنی:

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


تحقیق در مورد ماتریس رشته ریاضی

شاید یکی از کاربردی ترین مفاهیم و مباحث ریاضی ، مبحث مربوط به ماتریس است که از آن به عنوان ابزاری قوی در مباحث دیگر ریاضیات و بخصوص در فیزیک کوانتم و علومی چون آمار ، حسابداری و استفاده می شود

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 38
حجم فایل 186 کیلو بایت

ماتریس

مقدمه :
شاید یکی از کاربردی ترین مفاهیم و مباحث ریاضی ، مبحث مربوط به ماتریس است که از آن به عنوان ابزاری قوی در مباحث دیگر ریاضیات و بخصوص در فیزیک کوانتم و علومی چون آمار ، حسابداری و …….. استفاده می شود . امروزه ماتریس ها یکی از ابزارهای اساسی محاسبات علمی ریاضیات به حساب می روند و در واقع ، نقش امروز ماتریس ها در ریاضیات و پیشبرد آن ، مانند نقش دیروز اعداد است . ریاضیات کاربردی ، در تمام شاخه ها ، نیاز مبرم به ماتریس دارد ، به خصوص که در بیش تر موارد حل مسائل عملی به نوعی با حل دستگاه های معادلات یا نامعادلات پیوند می خورد که حل چنین دستگاه هایی با ماتریس ها ارتباط تنگاتنگ دارد . ا زاین ور ، این مبحث حتی در سطح دبیرستان نیز از اهمیت ویژه ای برخوردار است ، به طوری که هم در کتاب درسی ریاضیات سال دوم ، هم در هندسه ی تحلیلی و جبر خطی دوره ی پیش دانشگاهی و هم در کتاب های ریاضی عمومی رشته های مهندسی از آن استفاده شده است . لذا ، با مطالعه و یادگیری مفاهیم مربوط به ماتریس ها و کاربرد آن ها ، یکی از جالب ترین و در عین حال ، مفید ترین موضوعات ریاضی بررسی خواهد شد .
تعریف ماتریس : بر اساس تعریفی که اولین بار یک ریاضیدان انگلیسی به نام «کیلی» برای ماتریس ارائه داد ، «ماتریس ، آرایشی از اعداد حقیقی است که روی سطرها و ستون های منظم قرار گرفته و با دو کروشه محصور شده باشند .» هر یک از اعداد حقیقی موجود در یک ماتریس را یک درایه یا عنصر آن ماتریس می نامند .
هر یک از آرایش های زیر یک ماتریس است : (ماتریس ها را با حروف بزرگ نشان می دهیم . )
هر درایه در یک ماتریس ، در تقاطع یک سطر با یک ستون قرار دارد ، مثلاً در ماتریس A ، عدد 2 در تقاطع سطر اول با ستون دوم قرار دارد و یا در ماتریس B ، عدد در تقاطع سطر دوم و ستون دوم واقع است که در واقع ، جایگاه هر درایه در هر ماتریس با همین تقاطع ها مشخص و برای هر درایه در هر ماتریس دو اندیس در نظر گرفته می شود که اولی سطر و دومی ستون مربوط به آن درایه را معلوم می کند . برای مثال ، وقتی می نویسیم یعنی درایه ی روی سطر دوم و ستون سوم و برای هر ماتریس نیز دو اندیس در نظر گرفته می شود که اندیس اول ( از چپ ) تعداد سطرها و اندیس دوم تعداد ستون های آن ماتریس را نشان می دهد . برای مثال اگر B ماتریسی با دو سطر و سه ستون باشد ، می نویسیم و می گوییم « B ماتریسی 2 در 3 » یا «از مرتبه ی 2 در 3 » است ، و در حالت کلی اگر A ماتریسی باشد ، داریم :

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


روش های تکراری پیش فرض در مسائل گسسته خطی از منظر معکوس« بایسیان» رشته ریاضی

در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 40
حجم فایل 107 کیلو بایت

روش های تکراری پیش فرض در مسائل گسسته خطی از منظر معکوس« بایسیان»

چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص

(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از ترسیم روش تقریبی روش های تکراری با استفاده از روش های حل ترسیمی بعنوان یک سری حدسیات اولیه جدید آغاز می شود رجوع شود به] 3 [ فرایند ادامه می یابد تا یک معیاری برای توقف حاصل شود این امر باعث می شود روشهای مؤثر محاسباتی نسبت به مدل های استاندارد تأثیر بهتری داشته باشد.
این مقاله به صورت زیر تنظیم شده است در بخش 2 ما مختصراً برخی از تحقیقات در زمینه روشهای تکراری کریلا و را برای مسائل ناقس و گسسته خطی مورد بررسی قرار می دهیم بخس 3 یک بررسی اجمالی در مورد نتایج آماری مورد نیاز می باشد بخش 4 رابطه بین پیش فرضیات و مسائل معکوس آماری« بایسیان» را با اطلاعات آماری در زمینه حل و نقص را عنوان میکند بخش 5 چگونگی استفاده از استراتژیهای ترسیمی را باری فائق آمدن بر حدهای بالایی و پائینی در حل مسائل نشان میدهد. در بخش 6 ما دیدگاهی را مورد چگونگی انتخاب حدهای مناسب برای یک مجموعه مسائل خطی ناقص هنگامی که راه حل هایی برای حل حدها بخوبی شناخته نشده باشد و چگونگی فائق آمدن بر آن ها را با پیش فرضیات سمت راست مورد بررسی قرار می دهیم. رابطه بین پیش فرضیات سمت چپ و ویژگی های آماری در بخش 7 می آید بخش 8 نمونه های حل شده ای از عملکرد پیش فرض ها و استراتژی های ترسیمی را در بخشهای پیشین ارائه می دهد. نتایج و رئوس مطالب در بخش 9 موجود است.

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


كاربرد روش L1 – تقریب در معادلات انتگرال تكین رشته ریاضی

معادلات انتگرال را می‌توان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل كرد در این متن فن كلی را مورد بحث قرار می‌دهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح می‌دهیم

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 21
حجم فایل 245 کیلو بایت

كاربرد روش L1 – تقریب در معادلات انتگرال تكین

– مقدمه: معادلات انتگرال را می‌توان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل كرد. در این متن فن كلی را مورد بحث قرار می‌دهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح می‌دهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تكین و همین طور معادلات انتگرال قویاً تكین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به كار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه می‌شود.

2- مقدمات ریاضی :
به طور كلی هدف این متن عبارت است از كاربرد فن LP- تقریب در حل یك معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت

در معادلة بالا تابع هدایتگر و هسته K توابعی معلوم اند، در حالی كه تابع مجهول است كه باید آن را بیابیم پارامتر نیز معلوم است. مساله كلی LP- تقریب پیوسته را می‌توان به صورت زیر فرمول بندی كرد:
تابع f معین روی یك بازة حقیقی مانند x همراه با یك تابع تقریب مانند F(A)، كه به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.
در این صورت مساله LP- تقریب پیوسته به این معنی است كه باید برداری مانند به گونه ای بیابیم كه به ازای هر رابطة :

برقرار باشد.
جنبة اصلی مساله كه باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یك مساله LP- تقریب است. برای این منظور، فرض كنیم بتوان تابع جواب را با تابع F(A)، كه ممكن است خطی یا غیر خطی باشد، تقریب زد. اگر این تقریب را در معادله انتگرال بگذاریم، رابطة زیر به دست می‌آید:

در آن صورت مساله تقریب را می‌توان بر حسب LP- نرم به صورت:

بیان كرد كه در آن F(A,x) نسبت به A روی Rn و نسبت به x روی [a,b] تعریف شده است. توجه داشته باشید كه می‌توان عبارت

را تابعی مانند تلقی كنیم كه فقط به A بستگی دارد. پس می‌توان مسأله تقریب را به عنوان یك مسأله مینیمم سازی غیر مقید وابسته به n متغیر an,…,a1 در نظر گرفت. بنابراین، J فقط باید نسبت به این متغیرها مینیمم شود. در نتیجه، با حل مسأله مینیمم سازی بالا امكان حل تقریبی معادله انتگرال وجود دارد.
برای مطالعة درباره جزئیات این فن (و از جمله آنالیز ریاضی) مراجع [19] , [18] تالیف De Klerk را ببینید.
در این مرحله دو تفسیرزیر ضروری اند:
مقادیر مخلتف P را می‌توان مورد استفاده قرار داد. برای مثال به ازای P=1 مسأله منجر می‌شود به مسأله كمترین قدر مطلق و به ازای P=2 مسأله منجر می‌شود به مسألة كمترین مربعات. دلیلی وجودندارد كه مقادیر مثبت دیگر P را در نظر نگیریم. حالت P=2 را بیشتر می شناسیم، در حالی كه حالت P=1 كمتر آشناست. بنابراین احساس می‌شد كه این حالت باید حاوی چالش های عددی جالبی (در رابطه با قدر مطلقی كه در انتگرالده ایجاد می شود) باشد. توجه داشته باشید كه خطی یا غیر خطی بودن انتگرالده بالا نسبت به A بستگی به تابع تقریب F(A) و هسته K دارد. در روش عددی ای كه در اینجا مورد بحث قرار می‌گیرد تمایز خاصی بین خطی یا غیر خطی بودن قائل نمی‌شویم.

3- شیوة عددی و مثال ها :
فن عددی در اصل از دو شیوة عددی تشكیل شده است، یعنی شیوة مینیمم سازی و شیوة انتگرال گیری.
مینیمم سازی با استفاده ازیك الگوریتم استاندارد بهینه سازی انجام می‌گیرد. الگوریتم UMPOL در IMSL Library كه بر پایة روش «سیمپلكس داون هیل» از نلدر و مید (به مثال [37] تالیف Press مراجعه كنید)، كه گر چه زیاد سریع نیست اما این مزیت را دارد كه بسیار قوی است و به مشتق گیری ها نیازی ندارد. در واقع ماشین سر به زیری است كه معمولاً مقدار مینیمم یك تابع را به درستی می‌یابد . همچنین
De Klerk در [20] متذكر شده است كه روش لووس- جاكولا [34] نیز روشی قوی است كه به مشتق گیری ها نیازی ندارد و بررسی بیشتر جواب هایی كه با بهره گیری ازاین روش بدست می آیند را مفید دانسته است.
انتگرال گیری عددی با استفاده از فن كوادراتور اتوماتیكی كه ونتر و لاوری [3] با یك انتگرالده به صورت g(|f(x)|) آورده اند، انجام می‌شود. برای بدست آوردن این شیوه این محققین رویة انتگرال گیری تطبیقی استاندارد QAGE را تغییر داده اند (از QUAD PACK تالیف [35] Piessens ). در حین فرایند انتگرال گیری، با استفاده ازمقادیر موجود برای تابع، صفرهای تابع پیدا می‌شوند كه از آنها (صفرهای تابع) به عنوان نقاط تقسیم در انتگرال گیری استفاده می‌كنیم.
در [20] ذكر شده است كه ونتر ولاوری این روش را با موفقیت بالایی امتحان كرده اند، همچنین در پایان نامه دكتری ونتر نیز از بكارگیری این روش نتایج خوبی بدست آمده است [8].
De Klerk در [18] نتایج رضایت بخشی را با استفاده از این استراتژی تقریب بدست آورده است.
بر خلاف بسیاری روش های دیگر، با استفاده از روشی تقریبی نظیر روش یاد شده،‌ در ساختن جواب نیز آزادی عمل بیشتری داریم (مثلا می توان توابع گویا و توابع مثلثاتی را بكار برد).
با اینكه داشتن تجربه در ارتباط با انتخاب یك تابع تقریب لازم است اما این امر موجب كنار گذاردن روش مذكور نمی شود.
De Klerk با در نظر گرفتن مثال های زیر، برخی از نتایج اصلی سال های گذشته را به بحث می‌گذارد.
مثال (1- ) پارامتر به سمت یكی از مقادیر ویژه مسأله میل می‌كند.
هسته جدایی پذیر زیر را در نظر بگیرید، داریم :

كه در آن دو مجموعه از توابع مستقل خطی هستند.
در این حالت معادله انتگرال فردهولم به طور كلی یك و فقط یك جواب دارد. تنها استثنا وقتی است كه یكی از مقادیر ویژه هسته را به خود می‌گیرد كه در این حالت مسأله جواب ندارد (Tricomi [9]) . مثال بعد كارایی فن مذكور را نشان می‌دهد. معادله انتگرال فردهولم نوع دوم زیررا در نظر بگیرید.

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


كارایی الگوریتم مسیریابی شكسته شده برای شبكه های چندبخشی سه طبقه رشته ریاضی

این مقاله شبكه های سویچنگ سه طبقه clos را از نظر احتمال bloking برای ترافیك تصادفی در ارتباطات چند بخشی بررسی می كند حتی چنانچه سویچ های ورودی توانایی چند بخشی را نداشته باشند

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 26
حجم فایل 89 کیلو بایت

كارایی الگوریتم مسیریابی شكسته شده برای شبكه های چندبخشی سه طبقه

چكیده:
این مقاله شبكه های سویچنگ سه طبقه clos را از نظر احتمال bloking برای ترافیك تصادفی در ارتباطات چند بخشی بررسی می كند حتی چنانچه سویچ های ورودی توانایی چند بخشی را نداشته باشند و نیاز داشته باشند به تعداد زیاد وغیرمجازی از سویچهای میانی برای فراهم كردن این مسیرهایی كه پلاك نشوند مطابق درخواستها مدل احتمالی این دید را به ما میدهد كه احتمال پلاك شدن در آن بسیار كاهش یافته و تقریبا به صفر می رسد در ضمن اینكه تعداد سویچهای میانی بسیار كمتر از تعداد تئوریك آن است.
در این مقاله یك الگوریتم مسیریابی شكسته شده را فعال پلاك شدن در آن معدنی شده است برای اینكه قابلیت مسیریابی با fanout بالا را برآورده كند. ما همچنین مدل تحلیلی را بوسیله شبه سازی كردن شبكه بر روی
فهرست اصطلاحات: چند بخشی، ارزیابی عملكرد، مدل احتمالی، شبكه های سویچینگ

معدنی:
شبكه های clos بخاطر انعطاف پذیری وساده بود نشان بطور گسترده در شبكه های تلفن، ارتباطات Data و سیستمهای محاسبه ای موازی بكار برده می شوند. كارایی خیلی از برنامه های كاربردی بوسیله یك عمل چند بخشی موثر كه پیغامی را به چند دریافت كننده بصورت همزمان می فرستد بهتر می شود. به عنوان مثال در سیستمهای چند پردازنده ای یك متغیر همزمان سازی قبل از آنكه پرازنده ا بكارشان ادامه دهند باید فرستاده شود. همانطوریكه برنامه های كاربردی به خدمات چند بخشی موثر كه توسعه پیدا كرده نیاز دارند در طی چند سال اخیر حتی در شبكه های با دامنه عمومی طراحی سیستمهای سویچینگ كه بطور موثر بادرخواستهای چندبخشی سروكار دارد نیز اهمیت پیدا كرده است.
تلاشهای زیادی برای سازگار كردن شبكه های clos (كه در ابتدا برای ارتباطات نقطه به نقطه توسعه پیدا كرده بودند) برای آنكه با ارتباطات چند بخشی وفق پیدا كنند انجام شده است.شبكه clos چند بخشی با قابلیت پلاك نشدن هنوز بسیار گران در نظر گرفته میشوند برای همین كارایی آن را روی پیكربندی های كوچكتر از معمول در نظر نمی گیرند.
یك شبكه clos سه طبقه بوسیله نشان داده می شود كه سویچهای طبقه ورودی m سویچهای لایه میانی و سویچهای لایه خروجی است، هر كدام از سویچهای لایه ورودی تاپورت ورودی خارجی دارند و به هر كدام از سویچهای لایه میانی اتصال دارد بنابراین ارتباط بین طبقه ورودی وطبقه میانی وجود دارد . هر سویچ طبقه خروجی عدد پورت خروجی دارد و به هر كدام از سویچها یك درخواست اتصال نشان داده میشود به شكل c(x,y) كه در آن x یك سویچ ورودی و را یك مجموعه مقصد از سویچهای خروجی است.
چندی /1 درجه fanout درخواست نامیده می شود. به یك مجموعه از درخواستهای اتصال سازگار گفته می شود اگر جمع تصادفات هر كدام از سویچهای ورودی از بزرگتر نباشد وجمع تصادفات كدام از سویچهای خروجی بزرگتر از نباشد.
یك درخواست با شبكه موجود سازگار است اگر تمام درخواستها و همچنین درخواست جدید سازگار باشد در شكل (1) برای نمونه با پیكربندی موجود سازگار است ولی سازگار نیست جون سویچ خروجی شماره 1 درخواست را قبلا حمل كرده است. یك خط سیر برای درخواست اتصال جدید یك درخت است كه سویچ ورودی x را به مجموعه /1 تا سویچ خروجی از میان سویچهای میانی متصل می كند. یك درخواست اتصال قابل هدایت است اگر یك مسیر روی تمامی اتصالات بین طبقه ای پیدا كند وبتواند ردر انحصار قرار دهد.
ماسول و جدول برای اولین بار nonblacking محض /1 وشبكه clos سه طبقه قابل بازآیی را برای اتصالات چندگانه كه اتصالات بین هر تعداد از سویچهای ورودی وسویچیهای خروجی بوجود می آورد را معدنی كردند.
هرانگ قابلیت بازایی وخواص nonblaking شبكه های clos چند بخشی را تحت شرایط مختلف ومحدودیت های fonout مورد بررسی قرار داد
یانگ وماسول اولین تحلیل خود را كه اجازه می داد سویچهای هر طبقه برای كاهش نیازهای سخت افزاری همانند سازی كند را انجام دادند آنها ثابت كردند كه اگر تعداد سویچهای میانی o(nlogr/logloyr) باشد آنگاه شبكه nonblacking بوجود آمده است كه تمام درخواستها از حداكثر k عدد سویچ میانی استفاده می كند كه k نیز ثابت می باشد. علاوه بر مطالعات شبكه های clos چندبخشی nonblamking چندین تلاش رویكرد برای تعیین رفتاری blacking شبكه های swiching برای ارتباطات نقطه نقطه وجود داشت.
این تحقیق مدلهای احتمالی را را كه بصورت نزدیكی رفتار شبكه های سویچینگ سه طبقه ای را تخمین می زند را تامین می كند.
برای ارتباطات چند بخشی هرانگ ولین یك مدل blocking از درخواستهای چند پخشی قابل بازآرایی را در شبكه clos نقطه به نقطه nonblocking با فرمول c(n,r,2n-1) پیشنهاد كردند. یانگ ووانگ رفتار blaocking درخواستهای چند پخشی را روی شبكه clos بوسیله بسط دادن مدل بررسی كردند

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


مقاله عدد طلایی رشته ریاضی

دنیای اعداد بسیار زیباست و ما می توانیم در آن شگفتی های بسیاری را بیابیم در میان برخی از آنها اهمیت فوق العاده ای دارند

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 18
حجم فایل 494 کیلو بایت

عدد طلایی

دنیای اعداد بسیار زیباست و ما می توانیم در آن شگفتی های بسیاری را بیابیم. در میان برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه ی آشنایی بشر با آن به هزاران سال پیش از میلاد می رسد، عددی است به نام نسبت طلایی یا Golden Ratio.
اگر پاره خطی را در نظر بگیریم و فرض کنیم که آنرا بگونه ای تقسیم کنیم که نسبت بزرگ به کوچک معادل کل پاره خط به قسمت بزرگ باشد، اگر معادله ساده یعنی را حل کنیم. ( کافی است به جای b عدد یک قرار دهیم، بعد a را بدست آوریم)، به نسبتی معدل تقریباً 1/61803399 یا 1/618 خواهیم رسید. شاید باور کردنی نباشد، اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند، چرا که به نظر می رسد ذهن انسان با این نسبت انس دارد و راحت تر آن را می پذیرد.
این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود، بلکه در طبیعت نیز کاربردهای بسیاری دارد.
به نسبت بین خط های صورت این تصویرها نسبت طلایی گفته می شود.

 اهرام مصر
یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است.
مجموعه اهرام GIZA در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد، یکی از شاهکارهای بشری است، در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه ی هرم GIZA خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معرف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقاً 1/61804 میباشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد، یعنی چیزی حدود یک صد هزارم . حال توجه شما را به این نکته جلب می کنیم که اگر معامله فیثاغورث را برای این مثلث قائم الزاویه بنویسیم به معادله ای مانند خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. معمولاً عدد طلایی را با نمایش می دهند.
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدوداً معادل 440 متر می باشد، بنابریان نسبت 356 بر 320 معادل نیم ضلع مربع، برابر با عدد 1/618 خواهد شد.

 کپلر ( Gohannes Kepler 1571-1630)
منجم معروف نیز علاقه ی بسیاری به نسبت طلایی داشت، به گونه ای که در یکی از کتاب های خود اینگونه نوشت: “هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه ی فیثاغورث و دومی رابطه ی تقسیم یک پاره

خط به نسبت طلایی می باشد. اولین گنج را به طلا و دومی را به جواهر تشبیه کرد.”
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.

 آشنایی با سری فیبونانچی
باورکردنی نیست، اما در سال 1202 لئونارد فیبونانچی توانست به یک سری از اعداد دست پیدا کند، که بعدها به عنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید، آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، به سادگی به این رشته از اعداد خواهید رسید:

البته برخی از ریاضی دانان عدد صفر را جزو رشته فیبونانچی نمی دانند و یا حداقل آن را جمله ی صفرم سری می دانند، نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت:
1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89.000
و یا :
1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179
بله بنظر می رسد که این رشته به سمت همان عدد طلایی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.
بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


تحقیق ریاضیات گسسته رشته ریاضی

پیشرفتهای سریع تكنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم كامپیوتر، مسائل جدید را مطرح كردندكه طرح و حل آنها روشها و نظریه های تازه ای می طلبد

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 29
حجم فایل 77 کیلو بایت

ریاضیات گسسته


مقدمه:
تاریخچه ریاضیات گسسته
پیشرفتهای سریع تكنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم كامپیوتر، مسائل جدید را مطرح كردندكه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است كه روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به كار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.
معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ك در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبكه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشكار می شود.
ریاضیات گسسته مقدماتی متنی فشرده برابر یك دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان كارشناسی علوم كامپیوتر و ریاضیات است. مولفه های اساسی برنامه كار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : تركیبات نظریه گرا فها همراه با كار بردهایی در چند مسئاله استاندارد بهینه سازی شبكه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم كمیته برنامه ریزی یرای كارشناسی ریا ضی بر نقش حیاتی یك دوره درسی روشهای گسسته در سطح كارشناسی كه دانشجویان را به حیطه ریاضیات تركیباتی و ساختارهای جبری و منطقی وارد كند و روی ارتباط متقابل علوم كامپیوتر و ریاضیات تأكید داشته باشد صحه گذاشته اند.

جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی
در جریان تغییر نظام آموزش دوره های كارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم كه درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یكی از واحدهای پایه همه گرایشهای دوره كارشناسی ریاضی در نظر گرفته شده است. در كتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و … می باشیم.
همچنین در دوره پیش دانشگاهی نیز درسی جداگانه تحت عنوان ریاضیات گسسته در نظر گرفته شده است. از آنجا كه این شاخه از ریاضی نیاز مند بحث و تبادل نظر از لحاظ آموزشی و تعیین جایگاه و ارتباط آن با سایر شاخه ها و موضوعات ریاضی می باشد.
مطالبی كه در این قسمت از بحث طرح خواهد شد بیشتر بر اساس مقاله ای است كه تحت عنوان »آموزش ریاضی گسسته در دوره دبیرستان« توسط پروفسور آ.كاتلین 
در مجلة بین المللی ریاضیات، علم و تكنولوژی 1990 درج شده است.
» انقلاب كامپیوتری، ریاضیات گسسته را همانند حساب دیفرانسیل و انتگرال برای علم و تكنولوژی ضروری ساخته است.« 

محتوای كلی ریاضیات گسسته
محتوای دقیق یك دوره ریاضیات گسسته هنوز تا حدودی به طور مبهم باقیمانده است، زیرا هم كتابهایی كه تاكنون در این زمینه به رشته تحریر در آمده و هم برنامه های درسی كه در این مورد از سوی برنامه ریزان مباحث درسی ریاضی تهیه وتنظیم می شود، دقیقاَ نتوانسته اند موضوعات و قلمرو مباحث این درس را مشخص نمایند. موضوعاتی از قبیل نظریه اعداد و آمار و احتمالات و جبر خطی آنالیز عددی و مباحسات و برنامه سازیهای كامپیوتری ضمن اینكه در ریاضیات پیوسته جای پای محكمی دارند، در ریاضیات گسسته نیز خودنمایی و شكوفای روز افزون دارند. با این حال می توان گفت كه ریاضیات گسسته شامل مباحثی است كه مراحل مربوط به تغییرات گسسته و كمیتهای گسسته را توصیف می كند، در مقابل كالكوس كه مراحل تغییرات به طور پیوسته را دنبال می كند پس به طور دقیق می توان گفت كه ریاضیات گسسته كالكوس( حسابان) نیست.
به طور كلی یك دوره ریاضیات گسسته را می توان شامل عناوین زیر دانست:
منطق راضی و نظریه مجموعه ها ، ساختار های جبری از قبیل مباحث مربوط به گروهها و حلقه ها و میدانها و كواتریونها، شببكه ها جبر یون، نظریه گراف، روشهای تركیبات و شمارش، نظریه اعداد محاسبات و الگوریتمهای عددی و تجزیه و تحلیل آنها، استقرار و روابط بازگشتی معادلات تفاضلی،آمار و احتمال با فضاهای نمونه ای گسسته.

تفاوت ریاضیات گسسته و حساب دیفرانسیل و انتگرال ( ریاضیات پیوسته)
در اساسی ترین سطح، مدلی برای بیان تفاوت بین ریاضیات گسسته و ریاضیات پیوسته ( یعنی حساب دیفرانسیل و انتگرال و شاخه هایی از آنا لیز كه به حساب دیفرانسیل و انتگرال وابسته اند) تفاوت بین اعداد صحیح و اعداد حقیقی است. اعداد حقیقی، پایه همه ریا ضیاتی هستند كه مانند حساب دیفرانسیل و انتگرال با خواص توابع پیوسته سر و كار دارند. در حالیكه ریاضیات گسسته بیشتر با توابعی سر و كار دارند كه بر مجموعه نقاط گسسته تعریف شده اند( مثل دنباله ها) واز بسیاری جنبه ها به طور كامل با ساختمان پرشكوه آنالیز كه بر پایه حساب دیفرانسیل بنا شده است و به طور عمده به توابع پیوسته می پردازد، تفاوت دارد. می دانیم كه سیستم های فیزیكی از تعداد زیادی ذرات گسسته – اتمها و مولكولها – تشكیل شده است، در عمل پیوسته فرض كردن ماده فرض بسیار مناسب و دقیقی است. این سبب می شوند كه اكثر پدیده ها ی طبیعی سیستمهای فیزیكی كه از طریق حساب دیفرانسیل و انتگرال مدل سازی می شوند نوعاَ به صورت معادلات دیفرانسیل درآیند. این عملكرد آنچنان موفقیت شگفت انگیزی داشته است ك نتایج حاصل از آن تقریباَبرای همه مقاصد و اهداف ذاتاَ دقیق اند و موفقیت مهندسی وصنعت در قرنهای اخیر در سراسز دنیا مرهون این مدل سازی زیبا و دقیق و كار بردی ریاضی است، خصوصاَ از زمانی كه پیدایش حسابگرهای رقمی و سپس كامپیوترها امكان بررسی و حل عددی معادلات دیفرانسیل و دیگر معادلات را فراهم نمودند. این آغاز شكوفایی آنالیز عددی بود نمونه متعارف از مسائلی كه با استفاده از تكنیكهای آنالیز عددی حل می شوند این است كه فرمول بندی یك مساله فیزیكی را با استفاده از حساب دیفرانسیل و انتگرال در نظر بگیریم و سپس آن را به شكل گسسته تبدیل كنیم تا با روشهای عددی قابل حل باشد. چنانچه در نمودار سیكلی مدل سازی ریاضی برای مسائل فیزیكی بیان گردید مرحله نهائی این پروژه زمانی قابل استفاده برای مسائل فیزیكی خواهد بود كه جواب یا پیش بینی حاصلها از الگوی ریاضی ارزش عملی دانسته باشد و این امر جز به وسیله آنالیز عددی و محاسبات عددی مربوط به آن و تجزیه تحلیل خطاهای وارده و استفادهاز اصل دقت متغیر در روشهای ریاضی امكان پذری ننخواهد بود. از طزفی نیاز به ریاضیات گسسته، محدود به آنالیز عددی میشد نمی توانستیم ادعا كنیم كه چنین ریاضیاتی نقش مقایسه كردنی با حساب دیفرانسیل و انتگرال دارد. آنالیز عددی با وجود كار بردهای وسیع، آن موضوعی تخصصی است نمی تواند تأثیر چشمكیری بر روند دآموزشی ریاضیات بگذارد هر چند آنالیز عددی مهمترین محل تلاقی ریاضیات پیوسته گسسته است امروزه تنها یك جزء كوچك از كار بردهای ریاضیات گسسته را در‌بر‌می‌گیرد.

فهرست مطالب
– مقدمه
– جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2

– محتوای كلی ریا ضیات گسسته 3

– تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال 4

– مرور تاریخی مباحث مهم ریاضیات گسسته 8

– مفهوم جاگشت 8

– اولین فن حدس زدن 8

– دیریكله 9

– تاریخچه اصل شمول و عدم شمول 9

– نظریه گراف 10

– مسئله پل كونیگسبرگ 10

– طریقه نمایش گراف 11

– گراف هامیلتونی 12

– رابطه های بازگشتی و مبادلات تفاضلی 19

– نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی 25

– منابع 28

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


نامعادلات و نسبت های مثلثاتی رشته ریاضی

نماد علمی مدلی جدید برای عدد نویسی است كه از آن برای سهولت بخشیدن به امر نوشتن و خواندن اعداد بسیار بزرگ و یا بسیار كوچك مانند محاسبة جرم سیارات و یا یك اتم از عنصر، استفاده می كنند

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 28
حجم فایل 196 کیلو بایت

نامعادلات و نسبت های مثلثاتی

نماد علمی:
نماد علمی مدلی جدید برای عدد نویسی است كه از آن برای سهولت بخشیدن به امر نوشتن و خواندن اعداد بسیار بزرگ و یا بسیار كوچك مانند محاسبة جرم سیارات و یا یك اتم از عنصر، استفاده می كنند.
نماد علمی اعداد مثبت را به صورت می نویسند كه در آن K عددی است اعشاری بین یك و ده و n نیز عددی صحیح است.
مثال: اعداد زیر را به صورت نماد علمی بنویسد.
(الف (ب
نامعادله:
اگر یك نامساوی شامل متغیر باشد به آن نامعادله گفته می شود.
روش حل نامعادله:
حل نامعادله از بسیاری جهات شبیه حل معادله می باشد، ولیكن با این تفاوت كه در حل نامعادله برای مجهول محدوده ای به عنوان پاسخ (جواب) بدست می آید و در معادله یك مقدار مشخص و معینی برای مجهول حاصل می گردد.
:مثال
قوانین و نكات مهم در مورد نامساوی
1-به طرفین یك نامساوی می توان عددی را اضافه و یا كم نمود.

2-می توان طرفین یك نامساوی را در عددی مثبت ضرب یا بر آن تقسیم كرد.

3-اگر طرفین یك نامساوی را در یك عدد منفی ضرب (تقسیم) كنیم جهت نامساوی عوض می شود.

4-اگر طرفین یك نامساوی هم علامت باشند (مثبت یا منفی باشند) و طرفین را عكس كنیم. جهت نامساوی عوض می شود.
حل نامعادلات كسری:
برای حل نامعادلات كسری مانند معادلات گویا عمل می كنیم. یعنی دو طرف نامعادله را در كوچكترین مضرب مشترك مخرجها ضرب می نمائیم تا نامعادله از حالت كسری به خطی درآید.

نامعادلات توأم: این گونه نامعادلات یا بصورت دو نامعادله مجزا می شوند و یا اینكه ما باید آنها را به صورت دو نامعادله مجزا درآوریم. و روش حل آن بدین صورت است كه هركدام از نامعادلات را حل نموده و در نهایت بعد از بدست آوردن پاسخ آنها، اشتراك جوابهای آن دو را به عنوان جواب یا پاسخ اصلی بیان می كنیم.

مثال: نامعادلات توأم زیر را حل نمائید.
 
مثلثات
درجه (D): اگر یك دایره را به 360 قسمت مساوی تقسیم كنیم؛ به هر قسمت یك درجه گویند.
گراد (G): اگر یك دایره را به 400 قسمت مساوی تقسیم كنیم؛ به هر قسمت یك گراد گویند.
رادیان (R): یك رادیان زاویه ای است كه كمان مقابل به آن برابر شعاع دایره باشد. یعنی هر دایره رادیان است.
رابطة مقابل برقرار است
مثال 1:
100 گراد چند درجه و چند رادیان است؟

مثال 2:
مقدار زاویه ای را بر حسب رادیان بیابید كه اگر به اندازه اش بر حسب درجه 15 واحد اضافه شود اندازة آن برحسب گراد بدست آید.

نسبتهای مثلثاتی:
برای بدست آوردن نسبتهای مثلثاتی، یك زاویه را با جهت مثبت محور xها درنظر می گیریم. و آنها را به صورت پائین تعریف می كنیم. «باید توجه داشت كه نقطه A نقطه یا اختیاری برروی ضلع زاویه است و طول پاره خط OA برابر r فرض شده كه همواره مثبت است»:

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


تحقیق روش گرادیان رشته ریاضی

در گذشته تعداد زیادی مدلهای مختلف با استفاده از مطالب مشاهده شده در جهت برآورد یا تنظیم ماتریسهای OD پیشنهاد شده بود

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 19
حجم فایل 168 کیلو بایت

روش گرادیان

خلاصه :
در گذشته تعداد زیادی مدلهای مختلف با استفاده از مطالب مشاهده شده در جهت برآورد یا تنظیم ماتریسهای OD پیشنهاد شده بود . در حالیكه این مدلها از نظر فرمولاسیون ریاضی متفاوت بودند و از نظر تفسیر نیز متفاوت بودند . تمامی آنها در این حقیقت كه استفاده از آنها برای شبكه های در اندازه واقعی مشكل است مشترك بودند . این ناشی از پیچیدگی محاسبات كه در آنها درگیر است و احتیاج برای نرم افزار خیلی تخصصی برای انجام دادن آنها است .
در این مقاله ما یك مدل بر پایه گرادیان كه قابل اعمال در شبكه های در بعد بزرگ است ارائه می كنیم . از نظر زیاضی مدل به شكل یك مسئله حداقل سازی محدب در جائیكه توسط دنبال كردن جهت نزولی ترین شیب ما می توانیم تضمین كنیم كه ماتریس OD اصلی بیش از حد لازم تغییر پیدا نكرده است ، فرموله شده است .
ما نمایش می دهیم كه چگونه این تنظیم مدل درخواستی می تواند بدون احتیاج به گسترش هیچگونه نرم افزار جدید اجرا شود . بلكه تنها توسط استفاده از اقلام موجود از یك بسته برنامه ریزی حمل و نقل قابل اجرا خواهد بود . از آنجائیكه یك قلم از مراحل تنظیم اساساً در دو انتخاب تعادلی در شبكه م.ورد نظر وجود دارند ، این روش حتی در شبكه ها و ماتریس ها در مقیاس بزرگ قابل اعمال است . تا به اینجا ، مدلها بطور موفقی در چندین پروژه ملی و شهری در سوئیس ، سوئد و فنلاند با استفاده از شبكه هایی تا حد 522 منطقه ترافیكی و 12460 سفر اعمال شده است . برخی از نتایج این مطالعه نشان داده خواهد شد .
كلمات كلیدی : برآورد ماتریس O-D ، انتخاب تعادلی ، روش گرادیان .

مقدمه :
تقریباً در تمامی كاربردهای برنامه ریزی حمل و نقل ، اطلاعات ورودی كه بدست
می آید نشان از همه چیز مشكل تر و گران تر است . ماتریس درخواست مبدا – مقصد است . از آنجائیكه اطلاعات درخواستی بطور مستقیم قابل مشاهده نیست ، باید توسط تحقیقات دقیق و گران قیمت جمع آوری شود كه درگیر با مصاحبه های در منزل و در جاده ها یا روشهای پیچیده علامت گذاری یا نشانه گذاری است . برعكس حج سفرهای مشاهده شده به آسانی و با دقت قابل قبولی توسط شمارش در نقاط خاصی از سفر یا دستی یا اتوماتیك با استفاده از دستگاههای شمارنده مكانیكی یا القایی قابل بدست آمدن است . بنابراین تعجب آور نیست كه مقدار چشم گیری از تحقیقات در جهت بررسی احتمال برآورد یا بهبود یك ماتریس درخواست مبدا – مقصد با
حجم های مشاهده شده روی سفرهایی در شبكه مورد نظر انجام می شود .
تعداد زیادی از مدلها در گذشته پیشنهاد شده است . Vanvilet – (1980) willumsen , vanzuylen و (1981)willumsen – (1982)Nguyen – Vanzuylen و Branston (1982) – (1987)spiess . این مدلها در حالیكه خیلی از لحاظ تئوریكی جالب هستند ، تاكنون از لحاظ عملی ارتباط كمی داشته اند . این ناشی از زمان زیادی است كه صرف محاسبات می شود و كاربرد در مسائل در بعد كوچك است . آنچه كه ما خیلی خوب می دانیم این است كه هیچكدام از این روشها بطور موفق به شبكه های در ابعاد وسیع و بزرگ با صدها منطقه ترافیكی و هزاران سفر شبكه ای اعمال نشده است . اكثر این روشهای سنتی به شكل مسائل اپتیمم سازی كه در آنها تابع هدف هماهنگ با برخی توابع فاصله بین یك ماتریس درخواست اولیه و درخواست نتیجه شده g قابل فرموله شدن هستند . سپس مسائل محدود كننده در جهت نزدیك كردن حجم های انتخاب شده به حجم های مشاهده شده در نقاط شمارش استفاده می شوند . (توجه داشته باشید كه برخی فرمولاسیون ها VanZuylen و (1982)Branston مسائل محدود كننده در آنها دخیل می شوند و بنابراین بعنوان اصطلاحات اضافی در توابع هدف ظاهر می شوند . )
در بخشهای زیر ما یك مدل جدید كه مناسب برای كاربردهای در مقیاس بزرگ است را تشریح می كنیم . ما نشان می دهیم كه چگونه این مدل بدون احتیاج به گسترش هیچگونه برنامه جدیدی قابل اجرا است ، اما به جای آن با استفاده از نسخه استاندارد از بسته برنامه ریزی حمل و نقل EMME/2 استفاده می شود . در نهایت ما نتایج برخی كاربردهای در مقیاس شهری و ملی را كه در آنها مدل جدید ما اخیراً استفاده شده را خلاصه می كنیم .

روش گرادیان :
در این مقاله یك نوع جدید از مدلها پیشنهاد شده است . همچنین بعنوان یك مسئله اپتیمم سازی فرموله شده است . اما در اینجا تابع هدف برای اینكه حداقل سازی شود آنرا در فاصله بین حجمه ی مشاهده شده و انتخاب شده در نظر گرفته ایم . آسان ترین تابع از این نوع جذر جمع اختلاف ها ، كه به مسئله حداقل سازی هدایتمان می كند می باشد .

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل