کاملترین فایل مقاله بررسی ورق كاری و برشكاری

مقاله بررسی ورق كاری و برشكاری در 20 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 20

حجم فایل: 16 کیلو بایت

مقاله بررسی ورق كاری و برشكاری در 20 صفحه ورد قابل ویرایش

فهرست مطالب

مقدمه ?
آشنایی با انواع ورق ها ?
الف : ورق های آهنی ?
ب – ورق های غیر آهنی ?
اصول ورقکاری ?
تجهیزات برش ?
بریدن ورق (اصول قیچی کاری) ?
مکانیزمهای برش ?
ابزار ?
نکات ایمنی ??
صاف و مسطح کردن ورق ??
فرم دادن : ??
خمکاری ورق های فلزی ??
تجهیزات خم کاری ??
تعریف پروژه و تشریح ساخت ??
مراحل برشکاری و خم کاری ??
جوشکاری با گاز ??
مزایا و معایب جوشکاری گازی ??
کاربردهای جوشکاری گاز ??
تجهیزات جوشکاری گاز ??
گازهای مورد استفاده در جوشکاری ??
سیم جوش ها ??
انواع شعله و نحوه ایجاد آنها ??
انواع شعله عبارتند از ??
خاموش کردن مشعل ??

مقدمه

ورقكاری انجام یك سری عملیات روی ورق فلزی و استفاده از آن برای ساخت طرح مورد نظر می باشد . اهم این عملیات عبارتند از :

1- گسترش

2- برش

3- فرمكاری

4- اتصال

قبل از شروع عملیات ورق كاری لازم است با انواع ورق كاربرد و طرز تهیه آنها آشنا شویم .

به طور خلاصه روش تهیه ورق های فلزی به این صورت است كه شمش های فلزی را پس از گرم نمودن و عبور دادن از زیر غلط ها به ضخامت های مختلف به صورت ورق تبدیل می كنند . اگر این ضخامت بیشتر از 4 میلمی متر باشد به آن صفحه گویند و اگر كمتر از 4 میلی متر باشد ورق گفته می شود .

انواع ورق ها عبارتند از :

الف – ورق های آهنی : این ورق ها از شمش های آهنی با آلیاژهای مختلف تهیه می شوند .

ب – ورق های غیر آهنی (ورق های فلزات رنگین) : این ورق ها از شمش هایی با جنس های مختلف در ساختار آنها وجود ندارد ، ساخته می شوند .
آشنایی با انواع ورق ها

انواع ورق های آهنی به شرح زیر می باشند :

الف : ورق های آهنی

1- ورق آهن سیاه : به رنگ تیره می باشد و در مجاور رطوبت زنگ می زند .

روش تهیه : پس از عبور ورق از زیر غلطك ها ، برای تمیز كردن آن را با اسید شستشو می دهند و سپس بدون روكش می تواند مورد استفاده قرار گیرد .

موارد استفاده : ساخت كمد ، میز ، قفسه ، اطاق اتومبیل و استفاده از ورق های به ضخامت 4 میلی متر برای مخازن تحت فشار.

2- ورق گالوانیزه : به رنگ تیره روشن بوده و روكش روی و سرب در ان مانع زنگ زندگی می شود .

روش تهیه : پس از عبور ورق از زیر غلطك ها برای تمیز كردن آن را با اسید شسته و سپس از داخل مذاب روی و سرب می گذرانند .

مورد استفاده : ساخت كانال های تهویه ، دود كش ها ، منبع و مخازن

3- ورق آهن سفید : به رنگ روشن تر از ورق گالوانیزه می باشد و دوام این ورق در مجاور رطوبت كمتر از ورق گالوانیزه می باشد .

روش تهیه : س از عبورورق از زیر غلطك ها ، ان را با اسید شستشو می دهند در داخل وان مذاب روی قرار می دهند .

مواد استفاده : شبیه موراد استفاده ورق گالوانیزه می باشد .

4- حلب (ورق قلع اندود ) : كمی روشن تر از ورق آهن سیاه می باشد و ضخامت های كم تهیه می شود . مقاومت آن در برابر پوسیدگی خوب است .

روش تهیه : پس از عبور ورق از زیر غلطك ها آن را با اسید شستشو داده و سپس داخل وان مذاب قلع قرار میدهند .

موارد مصرف : ساخت قوطی و ظرف های نگهداری مواد غذایی مثل ، كنسرو و كمپوت و غیره

ب – ورق های غیر آهنی

1- ورق مسی : رنگ آن قهوه ای مایل به قرمز است و در مجاور رطوبت زنگ نمی زند .

موارد مصرف : در كارهای تزئینی ، ظروف آشپزخانه و …

2- ورق آلومینیوم : سبك و به رنگ سفید می باشد .

موراد مصرف : در كارهای تزئینی ، ساخت ظروف و در صنعت هواپیما سازی .

3- ورق برنج : به رنگ زرد شفاف بوده و آلیاژی از مس و روی می باشد . در كارهای تزئینی و در ساخت بعضی از وسایل خانه استفاده می شود .

4- ورق روی : شكننده و به رنگ خاكستری می باشد و به عنوان روكش فلزات آهنی استفاده می شود .

5- ورق برنز : آلیاژی از مس و قلع و به رنگ نارنجی می باشد و در ساخت لوله و بعضی از وسایل مثل سماور استفاده می شود .

6- ورق فولاد زنگ نزن : آلیاژی از نیكل ، آهن ، كروم ،… و به رنگ سفید و براق می باشد و در ساخت قطعات با كاربرد خاص بالا استفاده می شود .
اصول ورقكاری

1- گسترش : گسترش قطعه را باید به صورت نقشه آماده كرده و آن را روی ورق به طور دقیق ترسیم نمایید .

وسایل خط كشی و اندازه گیری در ورقكاری كه برای ترسیم طرح سترش بر روی ورق استفاده می شود عبارتند از :

1- خط كش فلزی : از جنس فولاد ، درجه بندی بر حسب اینچ و میلی متر به طول های 30و 50 و 100 سانتی متر .

2- سوزن خط كش دارد : از جنس فولاد

3- گونیای فلزی : گونیای 90 درجه جهت اندازه گیری و رسم خطوط عمود بر هم ، گونیای متحرك ، گونیای مركب .

4- پرگاز فلزی شامل پرگار معمولی ، پرگار كشویی ، پرگار انتقال

5- نقاله فلزی شامل نقاله ساده و نقاله با خط كش .

-محافظ های شیلنگ

كپسول استیلن : رنگ بدنه این كپسول سبز یا قهوه ای بوده و بلندی آن كمتر از كپسول اكسیژن می باشد . شیرهای آن رزوه چپ گرد دارند و شیلنگ های متصل به آن قرمز رنگ می باشند . به منظور تسهیل در تشخیص كپسول های اكسیژن و استیلن ، اتصالات كپسول استیلن را پخ دارد یا شیار دار می سازند .

اندازه معمول این كپسول ها 2800 لیتر و 5400 لیتر است كه فشار آن در حدود 15 بار می باشد باید توجه داشت كه كپسول استیلن را به طور ایستاده قرار می دهند ، زیرا اگر استون موجود در سیلندر وارد رگولاتور مشعل شود امكان انفجار گاز استون وجود خواهد داشت . مقدار گاز موجود در داخل كپسول گاز استیلن را از فشار سنج رگولاتور نمی توان مشخص كرد ، بلكه از مقایسه وزن كپسول خالی و كپسول حاوی گاز مقدار گاز تعیین می شود .

كپسول گاز اكسیژن : رنگ بدنه این سیلندر مشكی بوده و اندازه های معمول آن 3400 و 5200 و 6800 لیتر است . حداكثر فشار اكسیژن داخل آن 170 بار می باشد و دارای اتصالات خروجی با رزوه راستگرد است . رنگ شیلنگ های آن آبی یا سبز می باشد . برای تعیین مقدار اكسیژن موجحود در داخل كپسول می توان از فشار سنج بالا كه روی رگولاتور نصب گردیده است ، استفاده كرد یا می توان وسیله خاصی را به همین منظور روی كپسول نصب كرد تا مقدار گاز داخل را مشخص نماید .

رگولاتور یا مونومتر : كار اصلی این وسیله تنظیم فشار گاز خروجی می باشد . رگولاتور از یك طرف به كپسول وصل شده و از طرف دیگر آن گاز مصرفی با فشار مشخص خارج می شود . رگولاتور دارای دو عقربه فشار سنج می باشد ، یكی فشار گاز داخل كپسول و دیگری فشار گاز خروجی را نشان می دهد ، كه معمولاً اندازه گیری بر حسب بار (bar) است البته هر گاز رگولاتور مخصوص به خود را دارد و رگولاتورهای گازی اكسیژن و استیلن تفاوت هایی به شرح زیر دارند :

1- رنگ نوار روی رگولاتور گاز اكسیژن آبی یا سیاه است در حالی كه برای رگولاتور استیلن به رنگ سبز با قرمز است .

2- روزه های اتصالات كپسول و شیلنگ در رگولاتور استیلن چپ گرد هستند .

3- فشار سنج فشار پایین یا خروجی رگولاتور اكسیژن تا 8/4 بار و فشار سنج فشار پایین رگولاتور استیلن تا یك بار را نشان می دهد .

4- ورودی رگولاتور اكسیپن تا 8/4 بار و ورودی رگولاتور استیلن تا 8 بار را نشان می دهد .

یاد آوری : شیلنگ های اكسیژن آبی و شیلنگ های گاز استیلن قرمز رنگ هستند . است البته هر گاز رگولاتور مخصوص به خود را دارد و رگولاتورهای گازی اكسیژن و استیلن تفاوت هایی به شرح زیر دارند :

5- رنگ نوار روی رگولاتور گاز اكسیژن آبی یا سیاه است در حالی كه برای رگولاتور استیلن به رنگ سبز با قرمز است .

6- روزه های اتصالات كپسول و شیلنگ در رگولاتور استیلن چپ گرد هستند .

7- فشار سنج فشار پایین یا خروجی رگولاتور اكسیژن تا 8/4 بار و فشار سنج فشار پایین رگولاتور استیلن تا یك بار را نشان می دهد .

8- ورودی رگولاتور اكسیپن تا 8/4 بار و ورودی رگولاتور استیلن تا 8 بار را نشان می دهد .

یاد آوری : شیلنگ های اكسیژن آبی و شیلنگ های گاز استیلن قرمز رنگ هستند . است البته هر گاز رگولاتور مخصوص به خود را دارد و رگولاتورهای گازی اكسیژن و استیلن تفاوت هایی به شرح زیر دارند :

9- رنگ نوار روی رگولاتور گاز اكسیژن آبی یا سیاه است در حالی كه برای رگولاتور استیلن به رنگ سبز با قرمز است .

10- روزه های اتصالات كپسول و شیلنگ در رگولاتور استیلن چپ گرد هستند .

11- فشار سنج فشار پایین یا خروجی رگولاتور اكسیژن تا 8/4 بار و فشار سنج فشار پایین رگولاتور استیلن تا یك بار را نشان می دهد .

12- ورودی رگولاتور اكسیپن تا 8/4 بار و ورودی رگولاتور استیلن تا 8 بار را نشان می دهد .

یاد آوری : شیلنگ های اكسیژن آبی و شیلنگ های گاز استیلن قرمز رنگ هستند . است البته هر گاز رگولاتور مخصوص به خود را دارد و رگولاتورهای گازی اكسیژن و استیلن تفاوت هایی به شرح زیر دارند :

13- رنگ نوار روی رگولاتور گاز اكسیژن آبی یا سیاه است در حالی كه برای رگولاتور استیلن به رنگ سبز با قرمز است .

14- روزه های اتصالات كپسول و شیلنگ در رگولاتور استیلن چپ گرد هستند .

15- فشار سنج فشار پایین یا خروجی رگولاتور اكسیژن تا 8/4 بار و فشار سنج فشار پایین رگولاتور استیلن تا یك بار را نشان می دهد .

16- ورودی رگولاتور اكسیپن تا 8/4 بار و ورودی رگولاتور استیلن تا 8 بار را نشان می دهد .

یاد آوری : شیلنگ های اكسیژن آبی و شیلنگ های گاز استیلن قرمز رنگ هستند . است البته هر گاز رگولاتور مخصوص به خود را دارد و رگولاتورهای گازی اكسیژن و استیلن تفاوت هایی به شرح زیر دارند :

17- رنگ نوار روی رگولاتور گاز اكسیژن آبی یا سیاه است در حالی كه برای رگولاتور استیلن به رنگ سبز با قرمز است .

18- روزه های اتصالات كپسول و شیلنگ در رگولاتور استیلن چپ گرد هستند .

19- فشار سنج فشار پایین یا خروجی رگولاتور اكسیژن تا 8/4 بار و فشار سنج فشار پایین رگولاتور استیلن تا یك بار را نشان می دهد .

20- ورودی رگولاتور اكسیپن تا 8/4 بار و ورودی رگولاتور استیلن تا 8 بار را نشان می دهد .

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی و شرح كارخانه ریخته گری آلومینیوم تولید كننده سرسیلندر و پوسته كلاچ

مقاله بررسی و شرح كارخانه ریخته گری آلومینیوم تولید كننده سرسیلندر و پوسته كلاچ در 22 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 22

حجم فایل: 29 کیلو بایت

مقاله بررسی و شرح كارخانه ریخته گری آلومینیوم تولید كننده سرسیلندر و پوسته كلاچ در 22 صفحه ورد قابل ویرایش

كارخانه ریخته گری آلومینیوم

هدف این بخش تولید سیلندر و سر سیلندر و پوسته كلاج پژو می باشد. در این قسمت ریخته گری سیلندر از نوع تحت فشار كه از دستگاه High Pressure با قدرت

2500 HP كه یك دستگاه ژاپنی است استفاده می شود و پوسته كلاج و سرسیلندر با دو دستگاه Low Pressure با قدرت 1600 HP كه دستگاه ایتالیایی است تولید می شود البته قبلاً در این واحد دستگاه ریژه ریزی نیز موجود بود كه با توجه به طرح انتقال بخش ریخته گری به شهرستان ابهر این دستگاه جمع آوری و به ابهر منتقل شد.

در قسمت تولید ذوب از 5 كوره استفاده می شود كه این كوره ها شعله ای بوده و دمای حداكثر آنها در حدود می باشد. سه كوره آن برای تامین ذوب قسمت سیلندر با ظرفیت سه تن و سرعت تولید یك تن در ساعت بكار می رود دمای ذوب هنگامی كه درون با قبل ریخته می شود حدود 750- 730 درجه سانتگراد می باشد كه توسط لیفتراك به قسمت ریخته گری سیلندر حمل می شوند. درجه حرارت مذاب هنگام تحویل در قیمت ریخته گری سیلندر به می رسد كه در كوره نگهدارنده، موجود می باشد و دو كوره دیگر هر كدام با ظرفیت ذوب 500 كیلوگرم و سرعت تولید 150 كیلوگرم در ساعت موجود می باشند و برای قسمت سر سیلندر بكار می روند.

در مورد گاز زدایی در این كوره ها باید گفت با توجه به ویژگی فلز آلومینیوم و اینكه گازها كمتر از حالت انحلال خارج می شوند در قسمت سیلندر نیازی به گاز زدایی نمی باشد اما برای سر سیلندر از گاز آرگون كه توسط دستگاهی به كوره متصل است استفاده می شود. مهمترین مشخصات گاز زدایی مذاب سر سیلندر عبارتند از :

سرعت دوران دهنده گاز 400-450 RPM

زمان گاز زدایی 15-12 دقیقه

درجه حرارت شروع گاز زدایی

نوع گاز مصرفی : آرگون

فشار گاز ورودی : 5/2 اتمسفر

درصد خلوص گاز مصرفی 99/99%

در حدود چهار دقیقه پایانی گاز زدایی مواد :

AL:Sr10%

AL:Mg50%

به منظور اصلاح ساختار و جوانه زنی و آلیاژ سازی در چهار دقیقه پایانی

AL-Sr10% و AL-Mg50% افزوده و دوباره گاز زدایی می كنیم همچنین از فلاكس Coveral11 كه یكی تركیب فلوئوریدی می باشد استفاده می كنیم.

تولید سیلندر با دستگاه HP

از دستگاه HighPressure به منظور تولید سیلندر پژو استفاده می شود این دستگاه 180 تن وزن دارد و نیروی قفل شدن قالب ها 2500 تن و نیرویی كه عملShout را انجام می دهد 850 ( ) می باشد. كوره نگهدارنده آن 2500 كیلوگرم وزن دارد و دمای ذوب حدود 720 درجه سانتیگراد می باشد.

دستگاه از دو قسمت تشكیل شده است.

1) فك ثابت:

2) فك متحرك كه امكان قفل شدن قالب ها و شات كردن مذاب را می دهد. زمان كل تولید یك قطعه سه دقیقه می باشد و برای سیستم شات از سیستم هیدرولیك و گاز ازت استفاده می شود.

برای تهیه سیلندر از مذاب آلیاژ AS9U3 استفاده می شود برخی از نكات در تهیه این مذاب عبارتند از :

1- در صورت سرد بودن كوره عملیات پیش گرم به صورت كافی، صورت می گیرد تا دیواره كوره سرخ شود.

2- مواد اولیه و شارژ اولیه بصورت 50%شمش و 50%برگشتی سالن می باشد.

3-پس از ذوب كامل شارژ، دمای مذاب به حدود می رسد.

4- فلاكس Coverall11 به نسبت 500gr به ازاء 100 كیلوگرم مذاب روی سطح مذاب ریخته و پس از هم زدن در سطح مذاب عمل سرباره گیری صورت می گیرد.

5- دمای مذاب هنگام آلیاژ سازی می باشد.

6- مذاب با تركیب شیمیایی و درجه حرارت حدود داخل پاتیل پیش گرم و تخلیه می شود. مذاب با ابزار دستی به هم زده می شود. در حین تخلیه مذاب در پاتیل AL -50Mg% به مذاب افزوده می شود.

7- مقداری فلاكس بر سطح مذاب داخل پاتیل ریخته و در سطح هم زده و سرباره گیری می شود.

8- ابزار مورد استفاده در واحد ذوب باید پیش گرم و پوشش داده شود.

9- دمای ذوب نباید از بالاتر رود.

10- روزی یك مرتبه دیواره كوره ذوب و پاتیل با ماده Coverall 88 تمیز می شود.

تركیب شیمیایی مذاب:

Si

Fe

Cu

Mg

Ti

Zn

Ni

Pb

Sn

Fe+Mn

Min

25/8

6/0

8/2

__

2/0

__

__

__

__

__

Man

75/9

9/0

7/3

2/0

35/0

1

5/0

2/0

2/0

1/1

در مورد دستگاه HP باید گفت دارای سیستم خنك كننده از دو نوع زیر است

1- مدارهای داخلی سیستم

2-اسپری ماده خنك كننده كه شامل آب و ماده روان ساز است.
كنترل درجه حرارت مذاب چدن

مذاب از كوره فرعی وارد كوره ما در ( كوره نگهدارنده ) می‌شود و دمای كوره همیشه باید كنترل شود كه از المنتی كه بوسیله سیم به صفحه دیجیتالی وصل است استفاده می‌شود بر روی المنت‌ها یك پوشش سرامیكی قرار دارد.

اگر مذاب دارای دمای پائینی باشد امكان بروز عیب نیامد و ایجاد سرد جوشی در قطعات تولیدی می‌شود و اگر درجه حرارت مذاب بسیار بالا باشد امكان ماسه سوزی و اكسید شدن مذاب و تركیب مذاب با جداره نسوز و تولید سرباره و یا ایجاد مك‌های گازی درشت در قطعه كه به آن سوسه می‌گویند وجود دارد.

واحد شات بلاست Shot Blost

شات بلاست دستگاهی است كه توسط پرتاب ساچمه‌های ریز با سرعت بالا به دست قطعه آن را تمیز می‌كند جنس ساچمه از نوع فولاد می‌باشد و جنس بدنه دستگاه از فولاد یا چدن پركروم می‌باشد. در این قسمت نباید قطعات بیشتر از دوبار ساچمه‌زنی شوند زیرا باعث كاهش استحكام قطعه‌می‌شود.
واحد سنگ زنی

پس از تمیز كاری قطعات در واحد شات بلاست سیلندر و سرسیلندر، جهت از بین بردن زائده‌های یاقیمانده به قسمت سنگ زنی هدایت می‌شوند بعد از سنگ زنی سوراخها و مك‌ها را با جوشكاری پر كرده و با سنگ صاف می‌كنند.
واحد واتر تست

در این واحد دو دستگاه واتر تست موجود است كه یكی از آنها برای سیلندر و دیگری برای سرسیلندر می‌باشند كه نشستی را كنترل می‌كنند. در این دستگاه هوا با فشار به داخل قطعه اعمال می‌شود. البته تمام منافذ خروجی هوا توسط دستگاه بسته می‌شود. سپس قطعه در داخل آب فرو برده می‌شود و در صورتی كه از داخل آب حبابی خارج نشود سالم بودن قطعه نتیجه می‌شود در غیر این صورت جزو قطعات ضایعاتی محسوب می‌شود.

واحد كنترل نمایی قطعه

در این قسمت یك كنترل برروی قطعات انجام می‌شود كه باید دارای خصوصیات زیر باشد:

زمینه پرلیتی ـ فریتی كه بیشتر از 95% پرلیت داشته باشد و سختی در حدود HB 235-797 و 70% گرافیت نوع A.
واحد آزمایشگاه

درسه بخش مستقل از هم مشغول فعالیت می‌باشند كه عبارتند از :

الف) آزمایشگاه ماسه: در این آزمایشگاه در هر ساعت نمونه‌هایی از ماسه خط قالب‌گیری و ماهیچه‌سازی گرفته شده و درصد رطوبت، استحكام فشاری، تراكم پذیری، درصد خرد شوندگی و نفوذ پذیری آن اندازه‌گیری می‌شود. ضمناً آزمایشات درصد خاك رس فعال و غیر فعال، درصد مواد سوختنی نیز به طور روزانه محاسبه می‌شود.

ب) آزمایشگاه شیمی‌تر: در این آزمایشگاه آزمایشات آنالیستی، مواد مورد مصرفی و تطبیق آن با استانداردهای موجود انجام می‌شود.

ج) ازمایشگاه فیزیك: به این قسمت مجهز به دستگاه كوانتومتر ARL كه 22 عنصر را آنالیز و میكروسكوپ متالوگرافی LEITZ كه امكان بزرگنمایی تا 2500 برابر را دارا می‌باشد.
تولید ماهیچه

در كارگاه ریخته‌گری جمعاً 14 نوع ماهیچه به روشهای ( Hot Box ) و ( Cold Box ) تولید می‌شوند كه از این تعداد 9 ماهیچه برای تولید سیلندر با نامهای 1- ماهیچه بدنه شماره 1. 2- ماهیچه بدنه شماره2. 3- ماهیچه بدنه شماره3. 4- ماهیچه بدنه شماره4.

كه این چهار ماهیچه هر كدام جای میل لنگ و پیستون را تعبیه می‌كند. راهگاه مذاب در این ماهیچه‌ها تعبیه شده است. 5- ماهیچه واتر جاكت برای عبور آب سیلندر. 6- ماهیچه سینی كوچك برای تعبیه واتر پمپ. 7- ماهیچه سینی بزرگ برای تعبیه فلایویل. 8- ماهیچه كاسه. 9- ماهیچه میل سوپاپ.

تمام ماهیچه‌های سیلندر بصورت كشوئی درهم فرو می‌رود و كل این مجموعه در قسمت قالب‌گیری توسط دستگاه میكسچر برداشته و در قالب جایگذاری می‌كنند. البته 5 نوع ماهیچه نیز جهت سر سیلندر تولید می‌شوند كه عبارتند از :

1ـ ماهیچه جهت محل عبور بنزین.

2ـ ماهیچه دود.

3- ماهیچه اتاق كه نشیمنگاههای سوپاپ را می‌سازد.

4- ماهیچه مسیر عبور آب در سر سیلندر.

5- ماهیچه شمع.

ماهیچه‌های سرسیلندر پس از رنگ شدن و خشك شدن و پخته شدن در گرمخانه جهت مونتاژ و نصب به خط قالب‌گیری منتقل می‌شوند.

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی مقسوم های راجع به ابزار دقیق

مقاله بررسی مقسوم های راجع به ابزار دقیق در 15 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 15

حجم فایل: 15 کیلو بایت

مقاله بررسی مقسوم های راجع به ابزار دقیق در 15 صفحه ورد قابل ویرایش

سنسورها، ترنسدیوسرها و ترنسمیترها از مهم ترین اجزای یك پروسه صنعتی هستند كه كاربردهای فراوانی در پروسه های متنوع دارند.

كاربرد عمده این قطعات در ارزیابی عملكرد سیستم و ارائه یك فیدبك با مقدار و وضعیت مناسب است كه بدین ترتیب كنتر از سیستم متوجه وضعیت كاركرد آن و چگونگی حالت خروجی خواهد شد.

یك سنسوربنا تعریف قطعه ای است كه به پارامترهای فیزیكی نظیر حركت، حرارت، نور ، فشار، الكتریسیته، مغناطیستی و دیگر حالات انرژی حساس است و در هنگام تحریك توسط آنها از خود عكس العمل نشان می دهد.

یك ترنسریوسر بنا به تعریف، قطعه ای است كه وظیفه تبدیل حالات انرژی به یكدیگر را بر عهده دارد، بدین معنی كه اگر یك سنسور فشار همراه یك برسنریوسی باشد سسنور فشار پارامتر را اندازه می گیرد و مقدار تعیین شده را به ترانسیوسر تحویل می دهد، سپس ترنسیوسر آن را به یك سیگنال الكتریكی قابل ارك برای كنترل و صد البته قابل ارسال توسط سیم های فلزی تبدیل می كند.بنا براین همراه خروجی یك ترنسرویوسر، سیگنال الكتریكی است كه در سمت دیگر خط می تواند مشخصه ها و پارامترهای الكتریكی نظیره ولتاژ جریان، فركانس را تغییردهد، البته به این نكته مهم نیز توجه داشته باشید كه سنور انتخاب شده باید از نوع سنسورهای مبدل پارامترهای فیزیكی به الكتریكی باشد.

سنسورها و ملحقات آنها مثل ترنسریوسرها در گروه بزرگی تحت عنوان ابزار دقیق قرار داده و آنها را بر اساس نوع كاركرد، موارد استفاده و سایر مشخصات دیگر تقسیم بندی می كنند

راواحه به معرفی ابزار دقیق بكاررفته در این پروژه می پردازیم

سنسورهای بكار رفته در این پروژه عبارتند از سنسوردها ، رطوبت و فشار و یك سری محرك های شیر برقی برای كنترل دمپرهای هواساز می باشد حال بر توضیح مختصری در مورد نحوه كار كرد هر یك از این ابزارها می پردازیم:

سنسورهای دما

سنسورهای دما در سه مدل مختلف دارند كه عبارتند از :

1- مقاومت فلزی(RTD) Resistcince Temperature Detector

2- ترموكوپل

3- ترمیستور

حال توضیح اجمالی در مورد این مدل سنسورها می دهیم

1- مقاومت فلزی :

در محدوده 200oc – تا 800oc مقاومت الكتریكی اكثر فلزات بصورت نسبتاً خطی با درجه حرارت افزایش می یابد. این رفتار ناشی از برخورد الكترونهای حامل جریان با یكدیگر و كم شدن سرعت متوسط الكترونها در جهت میدان خارجی می باشد رابط بین درجه حرارت T و مقاومت R به صورت چند جمله ای زیر قابل بیان است .

در معامله فوق Ro مقاومت فلز در صفر درجه سانتی گراد (Y B.X …. ضرایب حرارت مقاومت می باشند مقادیر Y B به بعد معمولاً كوچك هستند و این رابطه به یك خطی با تقریب خوب تبدیل می شود. R=Ro(1+XT)

در این سنسور معمولاً از B فلز پلاتین، مس، نیكل استفاده می شود

پلاتین گر چه قدری گران است اما در اكثر كاربردهای صنعتی استفاده می شود مس ونیكل ارزانتر است و برای كاربردهای كه اهمیت كمتری دارند استفاده می شود.

2- ترموكوپل:

در سال 1821 ترماس سی بل موفق به كشف ولتاژ ترمو الكتریك( یا ولتاژ سی بك) گردید كه امروزه به عنوان یكی از ابزار مهم از اندازه گیری حرارت بحساب می آید.

اگر دو فلز A و B به یكدیگر متصل شوند. در محل اتصال آنها یك اختلاف پتانسیل الكتریكی كه به آن پتانسیل تماس، ولتاژ ترمو الكتریك یا emp می گویند. به وجود می آید. میزان پتانسیل تماس بستگی به جنس دو فلز AوB و نیز دمای محل تماس (T) دارد و از نظر ریاضی توسط یك چند جمله ای قابل بیان می باشد.

مقادیر و…. بستگی بر جنس دو فلز A و B دارد. این ولتاژ بین 10 تا 80 میلی ولت را بر اساس نوع المنت های فلزی به كار رفته در آنها می باشد. چون ترموكوپل ها سیگنال خروجی ولتاژی دارند باید به پلاسه آن هنگام نصب توجه كرد.

3- ترمیستور:

Thermistor

مقاومت حرارتی كه از نیمه های ساخته می شود ترمیستور گویند این مقاومت ها بر عكس مقاومت های فلزی دارای ضریب حرارتی منفی بوده بدین معنی كه مقاومت آنها با افزایش دما كاهش می یابد. علت این امر افزایش تولید الكترون- حفر، در نیمه های می باشد. این كاهش مقاومت بسیار غیر خطی است. رابط بین مقاومت و حرارت برای ترمیتور تابع نمایی قابل بیان است:

RT : مقاومت ترمیستوری

‏T : دما بر حسب لكوین

k B ثابت های ترمیستور

رابطه فوق را می توان به صورت زیر نوشت كه RT1 مقاومت ترمیستور در یك دمای مرجع می باشد

حساسیت بسیار زیاد ترمیستور اندازه گیری تغییرات بسیار كوچك دما را كه توسط حس كننده های دیگر مقرور نیست، امكان پذیر می سازد. لازم به ذكر است این سنسورها در خروجی خود سیگنال جریانی تولید می كنند

مقایسه بین ناحیه كاری B الهان اندازه گیری:

دركل باید در انتخاب نوع سنسور به دو پارامتر مهم توجه كنیم. ابتدا محدوده قابل اندازه گیری برای سنسور و درم سیگنال خروجی كه باید مطابق با سیستم كنترل شما باشد.

توضیح كلی در مورد لغت رطوبت:

توانایی هوا در نگه داشتن آب تأثیر قابل ملاحظه ای روی تعداد زیادی از فرآیندها كه در اتمسفر عادی انجام می گیرند دارد، بر حسب تعداد كاربردهایی كه شامل می شود، آب ممكن است ماده خیلی مهمی در زندگی روزمره ما باشد و ان در هوا، جامدات ، سیارات اتفاق می افتد كه در این مواد تشخیص داده می شود.

با وجود این كه رطوبت معمولا به آب موجود در هوا اطلاق می شود وقتی كه غلظت بخار آب در گازها، عموماً در هوا، تعیین شود باید در موارد زیر فرق گذاشته شود:

رطوبت مطلق: مقداربخار آب موجومد در واحد حجم گاز است، و بوسیله كثرم بر متر مكعب اندازه گیری می شود

رطوبت اشجاع: مقدار ماكزیمم آب در واحد حجم گاز است كه گاز د دمای داده شده نگه می دارد.

رطوبت نسبی: نسبت رطوبت مطلق به رطوبت اشجاع و مقدار آن پین 0تا 1 است.

رطوبت:

رطوبت هوا عبارت است از نسبت مقایسه ای میزان رطوبت موجود در هوا به میزان رطوبت هوا در زمانی كه در حالت 100 درصد اشباع شده باشد.

كنترل رطوبت هوا در پروسه های صنعتی كه فر آیند های حرارتی در آنها صورت می گیرد بسیار اهیمت دارد زیرا همان طور كه می دانید اولاً هوا در اثر گرم شدن به بخار آب تبدیل می شود كه این اثر برای پروسه هایی مثل رنگ كاری یا لعاب كاری های صنعتی و یا ساخت قطعات ؟؟ هادی بسیار خطرناك و غیر قابل كنترل است. در بسیاری از پروسه های نیز این خاصیت رطوبت هوا می تواند باعث هدایت الكتریسیته ساكن شود و باعث ایجاد جرقه و انفجار بین دو نقطه فلزی نزدیك بر هم گردد.

مثلاً در پروسه های چاپ روی مواد 0درصد رطوبت تحت كنترل باید در حدود 40 درصد نگه داشته شود تا مركب بخوبی روی كاغذ قرار گرفته وعمل چاپ كامل شود.

از آنجا كه رطوبت و دمای محیط با هم نسبت نزدیكی دارند. اغلب سنسورهای رطوبتی در داخل خود یك سنسور دما تیز دارند و سیگنال خروجی این سنسورها، برای یك دستگاه رطوبت گیر فرستاده می شود كه این دستگاهها معمولاً بروش خنك كردن هوای محیط و عبور دادن آن از داخل یك سیستم خنك كننده كار می كنند، البته اگر رطوبت زیر نقطه شبنم باشد روش های دیگری نیز برای خارج كردن آنها از سیستم وجود دارد.

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی مشخصات ریخته گری و ذوب

مقاله بررسی مشخصات ریخته گری و ذوب در 16 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 16

حجم فایل: 18 کیلو بایت

مقاله بررسی مشخصات ریخته گری و ذوب در 16 صفحه ورد قابل ویرایش

مشخصات ریخته گری و ذوب
آلومینیم و آلیاژ های آن به دلیل نقطه ذوب كم و برخورداری از سیالیت بالنسبه خوب و همچنین گسترش خواص مكانیكی و فیزیكی در اثر آلیاژ سازی و قبول پدیده های عملیات حرارتی و عملیات مكانیكی ، در صنایع امروز از اهمیت زیادی برخور دارند و روز به روز موارد مصرف این آلیاژ ها توسعه می یابد . عناصر مختلف مانند سیلیسیم ، منیزیم و مس در خواص ریخته گری و مكانیكی این عنصر شدیداً تأثیر می گذارند و یك رشته آلیاژ های صنعتی پدید می آورند كه از مقاوت مكانیكی ، مقاوت به خورندگی و قابلیت ماشین كاری بسیار مطلوب برخوردارند . قابلیت جذب گاز و فعل و انفعالات شیمیایی در حالت مذاب از اهم مطالبی است كه در ذوب و ریخته گری آلومینیم مورد بحث قرار می گیرد .
تقسیم بندی آلیاژ ها

آلیاژ های آلومینیم در اولین مرحله به دو دسته تقسیم می گردند :

الف ) آلیاژ های نوردی (Wrought Alloys) كه قابلیت پزیرش انواع و اقسام كارهای مكانیكی ( نورد ، اكستروژن و فلز گری ) را دارند .

ب ) آلیاژ های ریختگی (Casting Alloys) كه در شكل ریزی و ریخته گری های آلومینیم با گسترش بسیار مورد استفاده اند . آلیاژ های نوردی كه در مباحث شكل دادن فلزات مورد مطالعه قرار می گیرند از طریق یكی از روش های شمش ریزی (مداوم ، نیمه مداوم ، منفرد ) تهیه می گردند و پس از قبول عملیات حرارتی لازم ، تحت تاثیر یكی از زوش های عملیات مكانیكی به شكل نهایی در می آیند .

آلیاژ سازها (Hardeners)

این عناصر كه به نام های Temper Alloys و Master Alloysنیز نامیده می شوند به مقدار زیادی در صنایع ریخته گری آلومینیم به كار می روند ، زیرا آلومینیم با نقطه ذوب كم اغلب قادر به ذوب و پذیرش مستقیم عناصر با نقطه ذوب بالا نیست (مس 1083 درجه ، منگنز 1244 درجه ، نیكل 1455 درجه ، سیلیسیم 1415 درجه ، آهن 1539 درجه و تیتانیم 1660درجه سانتی گراد ) . همچنین عناصر دیگری كه نقطه ذوب بالا ندارند ، دارای فشار بخار وشدت تصعید و اكسیداسیون می باشند كه در صورت استفاده مستقیم درصد اتلاف این عناصر شدیدا افزایش می یابد ( منیزیم ، روی ) . تركیب شیمیایی و نقطه ذوب بعضی از آلیاژ ها كه در صنایع آلومینیم به كار می رود .مشخصات متالوژیكی آلیاژ ها در فصل جداگانه ای مورد مطالعه قرار خواهد گرفت . تهیه آلیاژ ساز ها معمولا در كار گاههای ریخته گری نیز انجام می گیرد در این مواقع اغلب روش های زیر مورد استفاده است .

معمولا قطعات عنصر دیر ذوب را ریز نموده و در فویل های الومینیمی پیچیده و یا در شناور های گرافیتی قرار داده ودر داخل مذاب الومینیم (800 درجه تا 850 درجه تحت فلاكس )فرو می برند و سپس آن را به هم میزنند.
احیاء كننده ها

اكسید آلومینیم به سهوات توسط عناصر دیگر احیاء می شود و فقط عناصر محدودی مانند كلسیم ، منیزیم، لیتم و برلیم قادر به احیاء آلومینیم می باشند . ولی اكسید های كلسیم و منیزیم به سرعت با اكسید آلومینیم تركیب می شده و اكسید های مضاعف (اسپینل ) تشكیل می دهند و از این رو برای خروج اكسیدهای آلومینیم اثرات منفی ندارد . در مقابل برلیم بریا كلیه آلیاژ های آلومینیم و به خصوص آلومینیم ، منیزیم توصیه شده است .

اكسید برلیم علاوه برقابلیت احیاء اكسید های آلومینیم و منیزیم ، می تواند اكسید فیلم غیر متخلخل در سطح مذاب تشكیل دهد و مانع از اكسیده شدن بیشتر مذاب شود .

با توجه به این كه فاكتور تخلخل BeO برابر 4 می باشد در حالی كه این فاكتور برای نزدیك 2 و برای MgO8/0است ،چگونگی حفاظت سطح مذاب توسط اكسید فیلم مشخص می گردد .

برلیم در شمش ها و قطعات آمیژن با 5/1% برلیم و یا به صورت تركیب به مذاب اضافه می گردد .

لیتیم نیز كه به صورت لیتیم فلزی و یا فلوئور لیتیم Fli به مذاب آلومینیم افزوده می شود ، در تقلیل مقدار اكسید های آلومینیم و منیزیم تاثیر بسیاری دارد . ول مشخصات كلی آن از بلریم نا مطلوب تر است ، زیرا قادر به تشكیل اكسید غیر متخلخل است و محافظت فلز را مانند برلیم انجام نمی دهد و از طرف دیگر به دلیل نقطه ذوب پایین ممكن است در مذاب حل شود

در خاتمه این مبحث لازم به توضیح است كه عناصری قادر به احیاء و استفاده در صنایع ذوب آلومینیم هستند كه مشخصات زیر را داشته باشند :

1ـ نقطه ذوب و تبخیر بالا

2ـ وزن اتمی كم

3ـ وزن مخصوص كم

4ـ قطر اتمی كوچك

و در بین عناصر ، برلیم مشخصات فوق را به طور كامل دارد و از این رو استفاده از آن در صنایع آلومینیم بیش از عناصر دیگر به عمل می آید .
فلاكس های گازی

اكسید ها و مواد غیر فلزی شناور در مذاب می تواند با فلاكس های گازی فعال مانند و یا تركیبات قابل تبخیر مانند از مذاب خارج می شوند . گرچه عناصر فوق برای گاز زدایی به كار می روند ولی در جریان خروج از مذاب قادرنند بسیاری از مواد غیر فلزی و آخال ها را به طریق مكانیكی به همراه خود به سطح مذاب انتقال دهند .بهر صورت عمل دگازین با كلرور ها وتركیبات كار تاثیربسیار زیادی در خارج كردن مواد ناخواسته از آلومینیم مذاب دارند ولی بایستی توجه كرد كه استفاده از این مواد اغلب با خورندگی بوته و ایجاد گاز سمی روبرو می باشد . فلاكس های حاوی كلر باعث اتلاف شدید منیزیم در مذاب می گردد و از این رو در مورد آلیاژ های آلومینیم – منیزیم بیشتر از كلرور منیزیم استفاده می كنند وبه صورت مایع عمل فلاكسینگ را انجام می دهد .

گاز های بی اثر مانند ازت و آرگون تاثیر كمی در تصفیه مذاب از مواد نا خواسته دارند و از این رو عمل فلاكس های كلروره بیشتر در ایجاد تركیب می باشد كه قادر است در فصل مشترك اكسیدها و مواد مذاب قرار گرفته و همراه خود ، آنها را استخراج می سازد .

انواع و اقسام كلر ور ها و فلاكس های قابل تبخیر در ذوب آلومینیم به كار می روند كه مهمترین آنها عبارتند از :

استفاده از فلاكس های مختلف بایستی متناسب با تركیب شیمیایی آلیاژ باشد و در غیر این صورت نا خالصی های فلزی در آلیاژ افزایش می یابند :

هگزاكلرواتان ، جامد می باشد ولی در درجه حرارت مذاب تجزیه شده و با آلیاژ تركیب می شود در این حالت یكی و یا تمام فعل و انفعالات زیر امكان پذیر می باشد .
تصفیه : فیلتر كردن

به دلایل اشكالات متالوژیكی ناشی از مصرف فلاكس ها ، سیستم فیلتر كردن در صنایع الومینیم توسعه روز افزون یافته است و این امر با استفاده از مواد متخلخل در سیستم های راهگاهی و یا در مخازن نگهداری مذاب و یا در سیستم های فیلتر مجزا انجام می گیرد كه هر یك در نوع خود از مزایا و محدودیت هایی بر خوردار است .

قسمت سختی سنجی :

برای سنجش میزان سختی قطعات تولید شده از روش برینل استفاده می شود در این روش با اعمال نیرویی بر روی قطعه به وسیله ساچمه ای به قطر 10 میلیمتر میزان سختی جسم را اندازه می گیرد گلوله در قطعه فرو می رود تا زمانی كه جسم زیر گلوله مقاومت كند اگر جسم سخت باشد از ماده ای به نام كاربید تنكستن (wc) استفاده می شود زمان اعمال نیرو 30 ثانیه می باشد اگر ماده نرم باشد 500 كیلوگرم بدان نیرو وارد می شود بعد از اعمال نیرو به وسیله میكروسكوپ چشمی قطر اثر نیرو را دیده و اندازه گیری
می كنند .

در این قسمت برای وارد كردن نیرو به قطعه از وزن 750 كیلوگرم استفاده می كنند نرمال سختی قطعه بین 100 الی 120 برینل می باشند بعد از این مرحله قطعه را با میكروسكوپ مجهز بازیننی می كننند تا ساختار كریستالی قطعه مشخص شود ساختار باید به صورت Modifire یا اصلاح شده باشد هنگام دیدن ساختار قطعه در زیر میكروسكوپ ذرات سیلیسم به صورت پیوسته و توری شكل در زمینه AL قرار می گیرند .

وجود ساختار سوزنی سر سیلندر باعث می شوند كه قطعه هنگام شوك حرارتی یا حتی شوك مكانیكی ترك بخورد بنابراین اگر قطعاتی وجود داشته باشد كه دارای ساختار سوزنی باشند را دوباره به قسمت ذوب برگشت داده و دوباره اصلاح ساختاری روی آن صورت می گیرد برای اصلاح ساختار از NA و یا از قرص نئوكلانت استفاده می شود .

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل دانلود مقاله توسعه كامل سازی باد از طریق پیش بینی انرژی باد

رنج بلند ظرفیت انرژی باد پیش بینی انرژی باد برآوردی از خطر یك مزرعة باد برای گونه های منقرض شده پرندگان

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 48

حجم فایل: 22 کیلو بایت

مقدمه

همانطور كه سطوح نفوذ باد از لحاظ جهانی افزایش می یابد، نیاز به پیش بینی صحیح تغییرات در تولید انرژی باد- در انواع متفاوت پیش بینی افق های زمان- برای پایداری شبكة نیرو و همچنین كارآیی تولید روز به روز مهم می شود. پیش بینی های صحیح انرژی باد، از جمله اجزاء مهم و حیاتی برای بسیاری از چالش های عملیاتی و برنامه ریزی هستند كه متغیر از پیگیری بار تا برنامه ریزی انتقال و اختصاص دادن سرمایه، تا بازاریابی سطح استراژی و برنامه ریزی عملیات است. وقتی برای تصمیم گیری بكار می رود، پیش بینی های صحیح انرژی باد، هزینه های فرعی خدمات را كاهش می دهند، قابلیت اعتبار شبكه از طریق برنامه ریزی مؤثرتر افزایش می یابد و اپراتورهای پروژه و شركت های برق می توانند تصمیمات استراژی مهمی بگیرند كه باعث افزایش كارآیی می گردد. پیش بینی هایی كه تا سالها بعد امتداد می یابد ، به شناسایی صحیح تر مشخصات نسل بلند مدت كمك می كند و باعث فرمولاسیون های صحیح تر فاكتور ظرفیت و انتخاب پروژه های مؤثرتر می گردد. این مقاله طرح می كند كه چگونه و چرا پیش بینی انرژی باد می پردازد. دومین بخش استراژی هایی را برای پیش بینی در افق های زمانی متفاوت طرح می كند. بخش3 نتایج حاصل از پیش بینی در موقعیت های متفاوت را در عرض ایالات متحده بررسی می كند. بخش آخر، خلاصه ای را فراهم كرده و مروری دارد بر آیندة پیش بینی.

سابقه پایه های هواشناسی

همانطور كه همه ما می دانیم، باد، سوختی برای انرژی باد است. مادامیكه دشواری بسیار زیاد ساده كردن باد، اساساً نتیجة اختلاف های در فشارها در فواصل افقی است، با این اختلاف، گرادیان فشار مطرح می شود. در ساده ترین سطح، حاصل عدم تعادل های گرمایی هستند و در اساسی ترین سطح، حرارت غیر یكنواخت زمین، باد را به حركت در می آور. در مقیاس های دقیقه، ساعت و روزانه، تغییرات در شرایطهای جوی در توپوسفر- پائین ترین سطح جو – آب و هوا نامیده می شوند . از سوی دیگر، شرایط آب وهوایی یا آب و هوا بر اساس یك مقیاس زمانی فرق می كند: شرایط آب و هوا، الزاماً توده و تراكم آب و هوا روی یك قسمت طولانی زمانی است و بنابراین ایده ای دربارة مشخصات متوسط آب و هوا فراهم می كند ( در مورد خاص ما، باد است) آب و هوا در تعدادی از مقیاس های هوایی فرق می كند از مقیاس های روزمره گرفته تا سال به سال و دامنة این تغییرات از لحاظ جغرافیایی وابسته است.

پیش بینی افق های زمان

یك استراژی كامل و جامع پیش بینی باید به این نكته توجه داشته باشد كه تاكتیك های متفاوت باید برای فلق پیش بینی هایی به كار روند كه از ساعت ها گرفته تا ماهها در آینده امتداد می یابند. شكل1، پیش بینی افق های متفاوت زمانی را نشان می دهد، اینكه چه اطلاعاتی و یا تاكتیك هایی برای پیش بینی بكار رفتند و دلایل استراژیكی و یا عملیاتی متفاوت برای پیش بینی چه چیزهایی هستند. در كوتاهترین افق زمان پیش بینی- افق كاربردی برای زمینه های عملیاتی چون پیگیری بار و پایداری باد- صحیح ترین استراژی های پیش بینی به مشاهداتی چون ورودی بستگی دارند. اساساً اطلاعات حاصل از پروژة باد و در ناحیة پیرامون، پروژه باد به صورت ورودی ها در استراژی های پیش بینی آماری متفاوت بكار برده شده است. متودهای سازشی اغلب شبكه های خنثی را بكار می گیرند و اساساً برای خلق این پیش بینی ها، كاربردی می باشند. بعد از چند ساعت، متودهای پیش بینی كه بر اساس مشاهدات هستند، بهترین پیش بینی را فراهم نمی كنند. بنابراین، ما به استفاده از مدل های پیش گویی آب وهوا در افق زمان پیش گویی قطعی می پردازیم كه تا چند روز طول می كشد. كلمة پیش بینی قطعی برای شرح، پیش بینی رویدادهای آب وهوای خاص در پیش بینی یك سیستم آب وهوای وارده بكار میرود. موضوع های عملیاتی در این افق پیش بینی از برنامه ریزی انتقال تا اختصاص دادن سرمایة تولید متغیر است. این اطلاعات برای تجارت نیرو روز نیز مهم است البته اگر این بازارها وجود داشته باشند. در هر كجا از چند روز گرفته تا بیش از یك هفته، جو بی نظم می شود و پیش گویی های قطعی دیگر نمی توانند با هر گونه درجة مهارت صورت گیرند. در این مقیاس ها، ما باید به انواع متفاوتی از شرایطهای خارجی- یا نیروها- تكیه كنیم، شرایطهایی كه می توانند الگوهای بلند مدت را تحت تاثیر قرار دهند.

این نیروها از زمینه های مطرح شده از زیر مثل تغییرات دماهای اقیانوس ناشی از نوسان جنوب El Nino ، تا زمینه های مطرح شده از بالا مثل تغییرات در دماهای استراتوسفری و تغییرات حاصله در الگوهای آب وهوا متغیرند.

متاسفانه، یا توانایی محدود شده ای برای پیش بینی این پدیده وجود دارد و یا بطور كلی این توانایی وجود ندارد و به این ترتیب به عدم اطمینان در پیش گویی بلند مدت اضافه می شود. در بلندترین افق های زمانی، كه چندین دهه در آینده امتداد می یابد، تغییرات در اجزاء سازنده اتمسفر، مثل دی اكسید كربن و یا ازن می توانند پاسخ جوی را تحت تاثیر قرار دهند. موضوعات مهم در این افق زمانی به مشخصه های تولید بلند مدت پروژه توام می شوند. مشخه هایی مثل فاكتور ظرفیت پروژه.

48 صفحه فایل Word

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی فرآیند ذوب

مقاله بررسی فرآیند ذوب در 12 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 12

حجم فایل: 14 کیلو بایت

مقاله بررسی فرآیند ذوب در 12 صفحه ورد قابل ویرایش

چکیده

در این مقاله به فرآیند ذوب و تکنیک های ذوب می پردازد.

فرآیند VAR

فرآیند VAR معروفترین روشی است که در آمریکا، به طور گسترده برای ذوب مجدد الکترودهای سوپر الیاژ VIM به کار می رود . نمایی از کوره VAR در فرآیند ذوب در یک بوته مسی که با آب خنک می‌شود در فشار صورت می گیرد. حرارت مورد نیاز از قوس جریان بالا و ولتاژ پایین بین الکترود و فلز مذاب تامین می شود. نرخ ذوب برای این فرآیند به صورت تابعی از توان ورودی کنترل می شود و دماهای فوق ذوب پایین قابل دسترسی است. نرخ انجماد را می توان با نرخ ذوب و شدت خنک کاری بوته به وسیله آب کنترل کرد. نرخ انجماد کنترل شده VAR مضرات ویژه الکترودهای VIM را کم می کند. ولی، تنها می تواند آخالهای اکسیدی را که در اثر فلوتاسیون در فرآیند VIM اولیه به وجود آمده حذف کند.

واژه های کلیدی: فرآیند ذوب اولیه، فرآیند پالایش، فرآیند ذوب ثانویه
فهرست مطالب

مقدمه ?
تکنیک های ذوب ?
فرآیندهای ذوب اولیه ?
فرآیندهای پالایش ?
فرآیندهای ذوب ثانویه ?
فرآیند VAR ??
فرآیند ESR ??
فرآیند EBCHR ??
فرآیند VADER ??
فرآیند ISM ??
نتیجه گیری 15

مقدمه

هر فرآیند ذوب ایده آل برای تولید سوپر آلیاژهای با كیفیت بالا باید شرایط زیر را داشته باشد:

1- قابلیت استفاده از هر نوع قراضه و مواد خام را داشته باشد.

2- كنترل دقیق تركیب شیمیایی و بازیابی همه عناصر آلیاژی امكان پذیر باشد.

4- بدون توجه به كلاس و طبقه بندی آلیاژ، انعطاف پذیری و تطابق كامل برای ذوب همه نوع سوپر آلیاژ را داشته باشد.

4- از نقطه نظر اثر واكنشهای اصلاح، پالایش و توالی انجماد كاملاً قابل كنترل باشد.

5- از هر نوع منبع آلودگی مانند گازها، ناخالصی ها و آخالهای غیر فلزی مبرا و مصون باشد.

6- بالاترین تولید با كمترین هزینه امكان پذیر باشد.

به سادگی می توان فهمید كه تركیبی از همه موارد بالا را نمی توان در تنها یك روش ذوب خلاصه كرد. به این ترتیب، ذوب سوپر آلیاژها را می توان در سه شاخه طبقه بندی كرد:

1- فرآیند ذوب اولیه، كه در آن آلیاژ با تركیب فلزات خالص، فرو آلیاژها، برگشتی‌ها و قراضه ها تهیه می شود.

2- فرآیند پالایش، كه می تواند در یك مرحله مجزا و یا همراه با فرآیند ذوب اولیه برای حذف ناخالصی ها و كنترل میزان گازها بصورت بگیرد.

3- فرآیند ذوب ثانویه، كه تاكید آن بر كنترل انجماد و تولید شمشهای با ساختار مناسب و بی عیب است. تهیه شمشهای با خلوص بالا بدون حضور عیبهای ناخواسته از مواد دیر گداز و یا اتمسفر هوا از اهداف این مرحله است.
تكنیك های ذوب
فرآیندهای ذوب اولیه

ساده ترین روش برای ذوب اولیه سوپر آلیاژها در مقیاس زیاد، ذوب در كوره قوس الكتریك (EAF) است. فرآیند ذوب در هوا صورت می گیرد و حرارت مورد نیاز نیز از قوس الكتریكی بیش الكترودهای گرافیتی و مواد شارژ تامین می شود. عموماً، از اكسیژن گازی نیز برای كاهش مقادیر كربن، هیدروژن و نیتروژن استفاده می شود. ذوب تهیه شده اغلب به صورت شمش برای محصولات نوردی و یا الكترود برای رسیدن به كیفیتهای بالاتر در فرآیندهای ذوب مجدد، ریخته می شود عمده مزایای (EAF) به ترتیب زیر است:

1- انعطاف پذیری در نوع و شكل مواد شارژ

2- كنترل دمایی خوب

3- سرباره فعال سیال برای پالایش متالورژیكی

4- بیشترین تولید با كمترین قیمت

معایب این روش نیز دارای ترتیب زیر است:

1- حضور مواد نسوز

2- هوای محیط

3- سرباره

فقدان شرایط هم زدن خوب باعث افزایش زمان پالایش شده و ذوب از لحاظ همگن بودن فقیر خواهد بود.

تعدادی از سوپر آلیاژها، به ویژه سوپر آلیاژهای پایه Co و Fe-Ni را می توان به وسیله روشهای مختلف ذوب در هوا كه برای فولادهای زنگ نزن به كار می‌رود، ذوب و تهیه كرد. با این وجود، برای اغلب سوپر آلیاژهای پایه Ni و یا پایه Fe-Ni، فرآیند ذوب اولیه باید در كوره ذوب القایی در خلاء (VIM) صورت بگیرد. استفاده VIM مقدار گازهای بین نشین (N2 O2) را به مقادیر كمتر كاهش داده و شرایط بسیار خوبی را برای افزایش یو كنترل مقادیر Ti Al (و دیگر عناصر نسبتاً فعال) فراهم می سازد. مقادیر سرباره و آخال نیز در مقایسه با روش ذوب در هوا به شدت كاهش می یابد.

شارژ اولیه برای كوره VIM ، آلیاژهای پایه است و عناصر آلیاژی فرار به آن اضافه نمی شود. بعد از آنكه شارژ در اثر یكسری واكنشهای خروج گاز و جوش ذوب شد، همگن سازی و پالایش انجام می شود. قبل از ریخته گری الكترودها، تركیب مذاب كاملاً كنترل شده و اصلاح می شود. الكترودها را می توان هم در خلاء و هم تحت گاز خنثی ریخته گری كرد.

عمده معایب فرآیند VIM عبارت است از:

1- سایش نسوز و واكنشهای ذوب- نسوز كه منجر به تولید آخالهای اكسیدی می‌شود.

2- عدم كنترل نرخ انجماد كه منجر به تشكیل لوله انقباضی اضافی و جدانشینی انجمادی می شود.

3- درشت ساختار و ریز ساختار غیر یكنواخت.
فرآیندهای پالایش

سه فرآیند پالایش اولیه برای سوپر آلیاژهای تولید شده از فرآیند EAF مورد استفاده قرار می گیرد. گاززدایی در خلاء (VD) اولین مرحله برای بالا بردن كیفیت محصول كوره الكتریكی است. در این فرآیند، فلز مذاب در یك محفظه مجزا و در معرض فشارهای بسیار پایین پالایش می شود. تحت این شرایط گازهای حل شده مانند مونواكسید كربن، هیدروژن و نیتروژن كاهش می یابد. برخی تجهیزات مانند الكترودهای گرافیتی یا كویلهای القایی نیز برای حرارت دهی فلز مذاب در حین و یا در ادامه فرآیند گاززدایی استفاده می شود.

توسعه فرآیندهای گاززدایی منجر به فرآیند كربن زدایی با اكسیژن در خلاء (VOD) گردید كه در آن، فولادهای زنگ نزن و سوپر آلیاژها را میتوان تحت شرایط بسیار كنترل شده عمل آورد. در این فرآیند پالایش، فلز مذاب تهیه شده از EAF كه دارای مقادیر زیادی كربن و كروم است تحت خلاء و با تزریق اكسیژن كربن زدایی می‌شود. این عمل، اجازه می دهد تا در تولید سوپر آلیاژها، از مواد خام حاوی كربن زیاد با قیمت پایین تر استفاده كرد. برای بالا بردن كیفیت گاززدایی می توان مذاب را به وسیله آرگون و یا القاء و یا هر دو هم زد.

سومین روش پالایش، تكنیك كربن زدایی به وسیله آرگون و اكسیژن (AOD) است در این روش، فلز مذاب معمولاً با تزریق اكسیژن و آرگون كربن زدایی می شود. مخلوط اكسیژن و آرگون از نازلها یا افشانكهای مجزا تزریق و نسبت آرگون به اكسیژن با پالایش یا كربن زدایی به تدریج افزایش می یابد. پس از رسیدن كربن بهحد مورد نیاز، واكنش های مذاب سرباره، مانند احیاء كروم و گوگرد زدایی را می توان با هم زدن مذاب به وسیله تزریق آرگون خالص تشدید كرد. تزریق آرگون همچنین، گازهای حل شده دیگر را خارج می كند.

فرآیند VAR

فرآیند VAR معروفترین روشی است كه در آمریكا، به طور گسترده برای ذوب مجدد الكترودهای سوپر الیاژ VIM به كار می رود ]1،4[. نمایی از كوره VAR در فرآیند ذوب در یك بوته مسی كه با آب خنك می‌شود در فشار صورت می گیرد. حرارت مورد نیاز از قوس جریان بالا و ولتاژ پایین بین الكترود و فلز مذاب تامین می شود. نرخ ذوب برای این فرآیند به صورت تابعی از توان ورودی كنترل می شود و دماهای فوق ذوب پایین قابل دسترسی است. نرخ انجماد را می توان با نرخ ذوب و شدت خنك كاری بوته به وسیله آب كنترل كرد. نرخ انجماد كنترل شده VAR مضرات ویژه الكترودهای VIM را كم می كند. ولی، تنها می تواند آخالهای اكسیدی را كه در اثر فلوتاسیون در فرآیند VIM اولیه به وجود آمده حذف كند.
فرآیند ESR

در سالهای اخیر به علت امكان تهیه و بهبود سوپر آلیاژهای بسیار تمیز ذوب ESR بسیار مورد توجه قرار گرفته است. ذوب ESR نیز در یك بوته مسی آبگرد صورت می گیرد. الكترود در یك سرباره تصفیه غوطه ور می شود و حرارت به وجود آمده در سرباره به وسیله جریان مستقیم الكتریكی كه از میان الكترود و سرباره به حوضچه مذاب می رسد ایجاد می‌شود. اولین منرحله تصفیه و پالایش، از واكنشهایی كه در حین تشكیل قطره بر روی نوك الكترود و فصل مشترك حوضچه مذاب- سرباره به وجود می آید نتیجه می شود. عمده ترین مزایای ESR عبارت است از:

1- بهبود تمیزی و كیفیت بالا.

2- فقدان مكانیزم هایی برای تشكیل «لكه های سفید» ]4[.

فرآیند ESR در مقایسه با VAR نسبت به كیفیت شمش (لوله انقباضی و تمیزی) كمتر حساس است. Klein و همكاران ]10[، تحقیقی بر روی شمش های IN718 تولیدی به دو روش VAR و ESR انجام دادند. نتیجه این تحقیقات نشان داد كه شمش ESR از لحاظ یكنواختی تركیبات شیمیایی بهتر، ریز ساختار دندریتی آن ریزتر و توزیع كاربیدهای آن بسیار یكنواخت تر است.

مضرات ESR نیز عبارت است از:

1- پتانسیل برای گیر كردن و به دام افتادن سرباره در مذاب

2- پتانسیل برای جدانشینی در شروع فرآیند

3- سرباره های ناپایدار

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی فرآیندهای جوشکاری مقاومتی

مقاله بررسی فرآیندهای جوشکاری مقاومتی در 23 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 23

حجم فایل: 22 کیلو بایت

مقاله بررسی فرآیندهای جوشکاری مقاومتی در 23 صفحه ورد قابل ویرایش

فهرست مطالب

عنوان صفحه

سپاسگزاری

فرایندهای جوشكاری 1

فرایند جوشكاری مقاومتی نقطه ای 11

اصطلاحات و بهسازی در نحوه جوشكاری نقطه ای 21

جوشكاری مقاومتی غلطكی 25

اصطلاحات و بهسازی برای جوشكاری مقاومتی غلطكی 28

فرایند جوش جرقه ای 31

فرایند جوش سربه سر 32

فرایند جوش تصادمی 32

نكات ایمنی در جوشكاری و برشكاری 33

فرآیندهای جوشكاری «مقاومتی» Resistance Welding

مقدمه و كلیات : فرآیندهای جوشكاری مقاومتی با فرآیندهای قبلی تفاوت كلی دارد .اتصال دو سطح توسط حرارت و فشار توأماً انجام می گیرد .فلزات به دلیل مقاومت الكتریكی در اثر عبور جریان الكتریكی گرم شده و حتی به حالت مذاب نیز می رسند كه طبق قانون ژول حرارت حاصل با رابطه زیر تعیین می شود .Q=KRI2t

=I شدت جریان( آمپر) ، R مقاومت( اهم)، t زمان( ثانیه) وQ ،حرارت (ژول).

فرآیندهای قوس الكتریكی حرارت در روی كار بوسیله هدایت و تشعشع توزیع می شود اما در فرآیندهای جوشكاری مقاومتی حرارت در عرض داخلی و سطح مشترك دو ورق در موضع اتصال در اثر عبور جریان الكتریكی تولید و منتشر می شود . جریان الكتریكی مذكور از طریق الكترودها و تماس آنها به سطح كار منتقل و یا از طریق ایجاد حوزه مغناطیسی احاطه شده در اطراف كا به قطعه القاء می شود . هر چند هر دو روش بر اساس حرارت مقاومتی پایه گذاری شده است اما معمولاً نوع اول فرآیند جوشكاری مقاومتی و دومی به فرآیند جوشكاری القائی نیز مرسوم شده است .

فاكتورهای شدت جریان و زمان از طریق دستگاه جوش قابل كنترل هستند ، اما مقاومت الكتریكی به عوامل مختلف بستگی دارد از جمله : جنس و ضخامت قطعه كار ، فشار بین الكترودها ، اندازه و فرم و جنس الكترودها و چگونگی سطح كار یعنی صافی و تمیزی آن .

مقاومت 3 مقاومت تماس بین دو ورق مهمترین قسمت است. فلزات دارای مقاومت الكتریكی كم بوده بالنتیجه مقاومتهای 1و3و5 اهمیت بیشتری پیدا می كنند . مقاومتهای 2و4 بستگی به ضریب مقاومت الكتریكی و درجه حرارت قطعه كار دارد .مقاومتهای 1 و 5 ناخواسته بوده و باید حتی المقدور آنرا كاهش داد . تمیزی سطح كار و الكترود و نیروی فشاری وارد بر الكترود عوامل تقلیل دهنده این مقاومتها (1و5) می باشند .

از نظر اقتصادی لازم است كه فاكتور زمان حتی المقدور كاهش یابد . كه در نتیجه جریان الكتریكی لحظه ای بالا در حدود 10000 – 3000 آمپر با ولتاژ 10 – 5/0 ولت مورد نیاز است . انواع مختلف روش های جوشكاری مقاومتی به روش ایجاد مقاومت موضعی بالا و تمركز حرارت در نقطه مورد نظر ارتباط دارد ، ولی به هر حال تماس فیزیكی بین الكترودهای ناقل جریان الكتریكی و قسمت هایی كه باید متصل شوند نیز مورد نیاز است . بطور كلی فرآیندهای جوشكاری مقاومتی یكی از بهترین روش ها برای اتصالات سری است .

دستگاههای جوشكاری مقاومتی شامل دو واحد كلی است : واحد الكتریكی (حرارتی) واحد فشاری(مكانیكی) . اولی باعث بالا بردن درجه حرارت موضع مورد جوش و دومی سبب ایجاد فشار لازم برای اتصال دو قطعه لب رویهم در محل جوش است .

منبع معمولی تأمین انرژی الكتریكی ، جریان متناوب 220 یا250 ولت است كه برای پائین آوردن ولتاژ و افزایش شدت جریان (به مقدار مورد لزوم برای جوشكاری مقاومتی) از ترانسفورماتور استفاده می شود .كه سیم پیچ اولیه با سیم نازكتر و دور بیشتر و ثانویه با سیم كلفتر و دور كمتر (اغلب یك دور ) به الكترودها متصل است .

جریان الكتریكی از طریق دو الكترود (فك ها) به قطعه كار و موضع جوش هدایت می شود كه معمولاً الكترود پائین ثابت و بالایی متحرك است .الكترود همانند گیره یا فك ها دو قطعه را دروضعیت لازم گرفته و جریان الكتریكی برای لحظه معین عبور می كند كه سبب ایجاد حرارت موضعی زیر دو الكترود در سطح مشترك دو ورق می شود. جریان الكتریكی در سطح تماس باعث ذوب منطقه كوچكی از دو سطح شده و پس از قطع جریان و اعمال فشار معین و انجماد آن ، دو قطعه به یكدیگر متصل می شوند .

الكترود در فرآیند های مختلف مقاومتی می تواند به اشكال گوناگونی باشد كه دارای چندین نقش است از جمله : هدایت جریان الكتریكی به موضع اتصال ، نگهداری ورقها بر رویهم و ایجاد فشار لازم در موضع مورد نظر و تمركز سریع حرارت در موضع اتصال الكترود باید دارای قابلیت هدایت الكتریكی و حرارتی بالا و مقاومت «اتصالی» یا تماسی (contact resistance) كم و استحكام و سختی خوب باشد ،علاوه بر آن این خواص را تحت فشار و درجه حرارت نسبتاً بالا ضمن كار نیز حفظ كند .ازاین جهت الكترود ها را از مواد آلیاژی مخصوص تهیه می كنند كه تحت مشخصه یا كد RWMA به دو گروه A آلیاژهای مس و B فلزات دیر گدار تقسیم بندی می شوند ، در جدول (1001) و (1101) مشخصات این دو گروه درج شده است .
مهمترین آلیاژهای الكترود مس ـكرم ، مس ـ كادمیم ، و یا برلیم ـكبالت ـ مس می باشد .این آلیاژها دارای سختی بالا و نقطه انیل شدن بالائی هستند تا در درجه حرارت بالا پس از مدتی نرم نشوند ، چون تغییر فرم آنها سبب تغییر سطح مشترك الكترود با كار می شود كه ایجاد اشكالاتی می كند كه در دنباله این بخش اشاره خواهد شد .

همانطور كه قبلاً اشاره شد قسمت هائی كه قرار است بیكدیگر متصل شوند باید كاملاً برروی یكدیگر قرار داشته و در تماس با الكترود باشند تا مقاومتهای الكتریكی «تماسی» R1 وR5 كاهش یابد . مقاومت الكتریكی بالا بین نوك یا لبه الكترود و سطح كار سبب بالا رفتن درجه حرارت در محل تماس می شود كه اولاً مرغوبیت جوش را كاهش می دهد (جوش مقاومتی ایدآل جوشی است كه علاوه بر استحكام كافی علامتی در سطح آن ملاحظه نشود ) .

د : “ له كردنی ” Mash welding :

این روش در تولید شبكه های سیمی نظیر سبد یا محافظ های توری لامپ های مختلف یا اسكلت مفتولی برای بتونهای مسلح و یا سیم ورق نظیر چرخهای بعضی از انواع اتومبیل بمیزان فراوان بكار گرفته می شود . سیم ها با طرح لازم بر روی فك ها با الكترودیی كه به صورت مسلح با شكاف های پیش بینی شده قرار می گیرند و با یك فشار و پائین آوردن الكترود جریان الكتریكی از محل تماس سیمهای رویهم قرار داده شده عبور كرده و بر اساس جوش مقاومتی ذوب موضعی در این محلها بوجود آمده و پس از پایان عبور جریان الكتریكی عمل اتصال انجام می گیرد .

ح : فرآیند جوشكاری “ كوك” Stich welding :

یكی از الكترودها در این فرآیند بنحوی طرح شده است كه توسط سیستم كنترل شده ای حركت متناوب رفت و برگشتی (بالا و پائینی) دراد و همزمان با این حركت صفحه كار نیز شبیه پارچه در زی چرخ خیاطی حركت انتقالی افقی می كند . بدین ترتیب یك سری جوش نقطه ای بطور متوالی با فاصله معین بین ورق ها ایجاد می شود كه شبیه بخیه های دوخته شده در زیر چرخ خیاطی است . می توان فاصله نقطه جوش ها را آنچنان كاهش داد تا دكمه های جوش كمی بر روی هم سوار شوند . در این حالت به شدت جریانی بیش از حد عادی نیاز است چون مقداری از جریان الكتریكی از جوش مجاور عبور می كند .

و : جوش “ پیش طرحی” Projection welding :

اصول كلی این روش شبیه جوشكاری نقطه مقاومتی است . ورق ها قبلاً تغییر فرم مناسبی داده می شوند . بطوركلی محلهای جوش شامل برجستگی های لازم است و هنگامیكه دو ورق در زیر الكترود (كه می تواند شبیه فكهای پرسكاری دارای فرمهای خاصی باشد ) قرار گرفت و فشار و جریان الكتریكی لازم در الكترود اعمال شد جریان الكتریكی از محلهای تماس یا موضع های بر آمده عبور كرده و مطابق با اصول كلی جوشكاری مقاومتی در این نقاط ذوب موضعی ایجاد و سپس دو قطعه بیكدیگر متصل می شوند .

تفاوت كلی این فرآیند همانطور كه اشاره شد در شكل الكترودها است كه شبیه فكهای پرس می باشد . همچنین فشار و شدت جریان بالاتر است . بدین ترتیب در یك سیكل عملیات چندین نقطه جوش داده می شوند . یكی از نكات حساس و مهم در این فر آیند جنس الكترود ها است كه اولاً باید دارای ضریب هدایت الكتریكی و حرارتی كم و ثانیاً مقاومت و سختی خوب و درجه حرارت انیل شدن بالا باشند كه قبلاً نیز به آنها اشاره شده است . از طرف دیگر سطوح این فكها باید كاملاً موازی باشند و به دلیل وسعت سطح آنها تا موازی بودن آنها موجب تغییرات در میزان فشار شده و درنتیجه چگالی جریان الكتریكی در نقاط تماس مختلف یكسان نخواهد شد . و در بعضی نقاط جوش ناقص و در برخی نقاط دیگر ممكن است جوش كامل باشد .

بدیهی این روش نیز برای مصارفی كه میزان تولید زیاد است بسیار مناسب و اقتصادی است .

جوشكاری مقاومتی “ غلطكی ” یا نواری Seam welding :

این فرآیند نیز تقریباً نوع تكمیل شده فرآیند جوشكاری مقاومتی نقطه ای می باشد و برای جوشكاری اشكال استوانه ای و بشكه ای و لبه های بر روی هم مناسب است . برای اتصال كافی است كه لبه های بر روی هم ورق ها در زیر غلطك های دستگاه گذاشته شود تا عملیات جوش انجام گیرد . دو غلطك ورق كار را در میان خوفشار داده و جریان از داخل غلطكها عبور كرده و بطور متناوب قطع و وصل می شود كه زمان قطع و وصل قابل تنظیم است و می تواند تا 50/1 ثانیه یا یك سیكل جریان متناوب HZ 50 تقلیل یابد . با قطع و وصل جریان الكتریكی و حركت متناوب یا دائم قطعه كار بین غلطك ها دكمه های جوش به طور متوالی بین سطح مشترك دو ورق بوجود می آید . همانطور كه در جوش “ كوك” اشاره شد دكمه های جوش در اینجا نیز می توانند از همدیگر فاصله داشته و یا بر روی یكدیگر سوار شوند.

اصول دستگاه از نظر ترانسفورماتور ، سیستم فشار دهنده و غیر شبیه بقیه دستگاههای جوش مقاومتی است . همچنین نكاتی كه درمورد جنس الكترودها و مشخصات آنها قبلاً توضیح داده شده است در این مورد نیز صادق می باشد ، بویژه اینكه چگالی جریان بالا لبه تماس غلطك با سطح كار كم (حدود 4 ـ 3 میلیمتر ) می باشد .چسبیدن اكسیدها و ناخالصی ها بر روی لبه غلطك و یا گرم شدن زیاد و احیاناً تغییر شكل آن شرایط عملیات جوش “نواری ” را تغییر می دهد .برای این منظور معمولاً تدابیر خاصی برای پاك كردن و سرد نمودن غلطك ها در ضمن كار پیش بینی می شود. كنترل شدت جریان و نحوه قطع و وصل آن نكته تكنیكی و قابل توجه دیگری است كه در طرح دستگاههای جوش نواری یا باندی در نظر گرفته می شود.

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی ریخته گری چدن

مقاله بررسی ریخته گری چدن در 20 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 20

حجم فایل: 17 کیلو بایت

مقاله بررسی ریخته گری چدن در 20 صفحه ورد قابل ویرایش

چدن ریختگی

مقدمه :

عنوان چدن ریختگی مشخص كننده دسته بزرگی از فلزات است . فلزاتی كه در این دسته قرار دارند از نظر خواص با یكدیگر تفاوتهای فاحش دارند . عنوان چدن ریختگی ، همانند عنوان فولاد كه مشخص كننده دسته دیگری از فلزات است ، یك عبارت كلی است . فولادها و چدنها در اصل آلیاژ آهن هستند كه با كربن ساخته شده اند اما فولاد همواره كمتر از دو درصد كربن داشته و معمولاً درصد كربن آنها از یك درصد بیشتر نمی شود . درحالیكه چدنها بیش از دو درصد كربن دارند. چدنها ی ریختگی گذشته از كربن باید دارای مقادیر قابل توجهی از سیلیسیم باشند كه عموماً میزان آن از یك تا سه درصد متغیر است .

تفاوتهای مذكور اختیاری و دلخواه نیست اما همین امر ریشه متالورژیكی و عامل موثری است كه سبب میشود خواص مفید و متفاوتی در این دو دسته از گروه فلزات آهنی پدید آید .

امید است این پروژه سهمی در پیشبرد صنعت وتكنولوژی ریخته گری چدن در ایران داشته باشد و مورد استفاده دیگر دانشجویان نیز قرار گیرد .

تقسیم بندی انواع چدنها :

چدن سـفید :

در چدنهای سفید كربن به شكل كاربید آهن یا سمانتیت ظاهر می شود . كاربید آهن تركیب شیمیایی كربن موجود در مذاب همراه با آهن می باشد بصورت مجموعه ای از اجزاء سخت و شكننده می باشند كه به آنها سمانتیت نیز گفته میشود ، كاربید آهن یا سمانتیت تعیین كننده خواص نهایی ریز ساختار می باشد . به همین دلیل چدن سفید اساساً آلیاژی سخت و شكننده است . سطح مقطع شكست این چدن به رنگ سفید بوده و استحكام فشاری زیادی خواهد داشت .

از خواص دیگر این آلیاژها مقاومت عالی در برابر سایش و نیز سختی زیاد را می توان نام برد . در این چدنها سرعت سرد شدن مذاب بسیار زیاد است كه برای این منظور معمولاً ریخته گری این نوع چدن در قالب مبرد دار انجام می شود . مبرد مورد استفاده در انجماد این آلیاژها معمولاً از جنس گرافیت یا آهن می باشد در قسمتهای نازك و یا گوشه های تیز از یك قطعه با این جنس یا پره های نازكی كه از این جنس استفاده می شود . معمولاًو به طور حتم چدن سفیدتشكیل خواهد شد .

چدن چكشخوار ‌‌ ( مالیبل Malleable ) :

در این چدنها كربن بشكل گرافیت در نقاط مختلف تجمع نموده و شكلهای نا منظمی شبیه به كلوخه را ایجاد می كنند این چدن از نظر تركیب شیمیایی شبیه به چدن سفید بوده و قطعات چدن چكش خوار را در ابتدا می توان از چدن سفید تهیه نمود بدین صورت كه ابتد ا چدن سفید ریخته گری شده و سپس با انجام یك عملیات حرارتی كربن را به صورت گرافیت كروی در زمینه راسب ( رسوب ) می كنند . ضخامت قطعه های چدن چكش خوار معمولاً محدود و ضخامت كمی دارند مزیت این چدنها قابلیت چكش خواری ، نرمی و قابلیت تراشكاری مناسب می باشد .

چدن خاكستری :

در این چدنها ، كربن به شكل گرافیت می باشد ، این چدنها در صنعت بیشترین كاربرد را به خود اختصاص می دهند و به آنها چدن ریختگی می گویند كه البته برای این نوع چدن عنوان نا مناسبی می باشد سطح مقطع چدن خاكستری به رنگ خاكستری بوده كه این رنگ ناشی ازرسوب ( ورقه های ) نازك گرافیتی در آن می باشد .

از نظر خواص مكانیكی ، سختی بالایی دارند و مقاومت فشاری زیاد و نیز قابلیت تراشكاری خوبی از خود نشان می دهند . از خواص دیگر این چدنها قابلیت جذب ارتعاش می باشد . ورقه های گرافیت در این چدنها می توانند به شكلها و فرمهای مختلفی ظاهر شوند . هر یك از انواع گرافیت تمایل به افزایش خواص معینی از این چدنها دارند .

چدن نشكن ـ داكتیل ( چدن با گرافیت كروی ) :

كربن دراین چدنها به صورت گرافیت كروی شكل ظاهر میشود . تركیب شیمیایی این چدنها شبیه تركیب شیمیایی چدن خاكستری میباشد ، فقط وجود مقدار عنصر گوگرد در این چدنها بسیار حساسیت دارد .

افزودن مقدار كمی از عنصر منیزیم( Mg ) به چدن مذاب باعث كروی شدن گرافیت و تولید چدن نشكن خواهد شد . بالا بودن مقدار كربن و سیلیسیم باعث افزایش محفوظ ماندن مزایای فرآیند ریخته گری و قابلیت ماشینكاری در این چدنها میشود .

مدول الاستیك چدن نشكن زیاد است و استحكام تسلیم آن در محدوده خوبی قرار دارد ، از طرفی انعطاف پذیری این آلیاژها بسیار خوب است .

وجود گوگرد د ر این چدنها باعث اتلاف منیزیم به شكل سولفورید منیزیم Mgs می شود بنابراین مقدار گوگرد در این آلیاژها نباید از 03/0% بیشتر باشد .

ضخامت مقطع تاثیر بسیار محدودی برخواص آن دارد . ضخامت این چدن بطور كلی اثری بر میزان سختی آن نخواهد داشت .

انواع مختلف چدنهای داكتیل یا نشكن باخواص مكانیكی متفاوت و ریز ساختارهای مختلف وجود دارند . از نظر تركیب شیمیایی معمولاً تفاوتی بین انواع مختلف این چدن وجود ندارد ، مگر اینكه جهت كاربردهای از پیش تعیین شده وطراحی های از قبل صورت گرفته عمداً اختلاف در تركیب شیمیایی ایجاد گردد ، این تغییرات تركیب شیمیایی به منظور بهبود ساختمان میكروسكوپی قطعه صورت می گیرد .

5) چدن با گرافیت فشرده :

در این چدنها گرافیت به شكل ورقه های ضخیم و كرمی شكل خواهد بود كه هر یك از این ورقه ها با یك دانه موجود در زمینه فلز ارتباط دارد این چدنها از نظر خواص در بین خواص چدن خاكستری و خواص چدن نشكن قرار دارند . شكل گرافیت فشرده تحت عناوین :

1 ) شبه ورقه ای 2) ورقه متراكم 3) نیمه كروی 4) گرافیت كرمی شكل

قرار دارد .

zn ) :

شمشهای روی با درجه خلوص 7/98 تا 5/99 درصد روی در

استانداردهای مختلف بین المللی تهیه میشوندو همواره حاوی ناخالصیهایی

از قبیل مس ، كادمیوم ، آهن ، سرب و گاهی قلع و آنتیموان می باشند .

در ذوب آلومینیوم معمولاً از شمشهای روی با درجه خلوص 9/99

استفاده می شود تا میزان ناخالصیها ، به خصوص آهن تقلیل یابد . نقطه

ذوب روی 419 درجه سانتیگراد و وزن مخصوص آن 1/7 گرم بر سانتیمتر مكعب است .

منیزیم ( mg ) :

در مواقعی كه درصد كمی از منیزیم مورد نیاز باشد ، می توان مستقیماً منیزیم رابه مذاب آلومینیوم اضافه نمود كه شمشهای آن با درجه

خلوص 9/99 حاوی ناخالصیهایی از قبیل آهن ، سدیم ، آلومینیوم ، پتاسیم ، مس و نیكل می باشند . نقطه ذوب منیزیم650 درجه سانتیگراد

و وزن مخصوص آن 74/1 و در شمشهای 5/2 تا 15 كیلو گرمی تهیه می شود .

سیلیسیم ( si ) :

این عنصر به دو صورت سیلومین و یا سیلیسیم كریستالیزه به

آلومینیوم اضافه می شود.تركیبات سیلومینی با 10 تا 13 درصد سیلیسیم

وجود دارد . شمش سیلیسیم كریستالیزه با درجه خلوص 5/99 تا 9/99

درصد سیلیسیم همراه ناخالصیهایی از قبیل آهن ، آلومینیوم دارای نقطه

ذوبی حدود 1400 درجه سانتیگراد و وزن مخصوص آن 4/2 می باشد .

منگنز ، مس ، آهن ، نیكل ، كروم مستقیماً به مذاب آلومینیوم اضافه نمیگردند و در مورد این عناصر معمولاً ازآمیژانها استفاده میكنند .

شمشهای دوباره ذوب ( ثانویه ) و قراضه :

شمشهای ثانویه كه از ذوب و تصفیه قراضه هاوآلیاژهای برگشتی

تهیه میشوند معمولاً از كنترل كیفی مطلوب برخوردارند و حاوی مقداری

ناخا لصیهای معمولی در آلومینیوم مانند مس ، آهن و سیلیسیم هستند .

قراضه ها و قطعات برگشتی بایستی به دقت از نظر تركیب شیمیایی كنترل ودسته بندی شوند . استفاده مستقیم ازقراضه هاو قطعات

كوچك ( براده ، پلیسه و اضافات تراشكاری ) به دلیل افزایش سطح تماس و شدت اكسید اسیون عملاً نامطلوب میباشد و ترجیحاً این قطعات

را تحت نیروی پرسهای هیدرولیكی فشرده و در بلوكه های مختلف به كار می برند . برگشتیها همچنین آغشته به روغن گریس ، رطوبت و …

می باشند كه بایستی قبل از استفاده و ذوب دقیقاً تمیز و از كثافات روغن

بر كنار باشند و معمولاً از دستگاههای دوار و خشك كننده در این مورد

استفاده می كنند .

از آنجا كه قراضه ها معمولاً تركیبات ناشناخته ای دارند ، اغلب

ترجیح داده می شود كه آنها را در كارگاه ریخته گری ذوب و پس از

كنترل و آنالیز كیفی مورد استفاده قرار دهند .

آلیاژ سازها ( Hardeners ) :

این عناصر كه به نامهای Master alloys و Temper alloys

نیز نامیده می شوند به مقدار زیادی در صنایع ریخته گری آلومینیوم به

كارمیروند ، زیرا آلومینیوم با نقطه ذوب كم اغلب قادربه ذوب و پذیرش

مستقیم عناصر با نقطه ذوب بالا نیست ( مس 1083 ، نیكل 1455 ،

سیلیسیم 1415 ، آهن 1539 و تیتانیم 1660 درجه سانتیگراد ) .

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی تعریف،كاربرد و مزایای ریخته گری

مقاله بررسی تعریف،كاربرد و مزایای ریخته گری در 132 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 132

حجم فایل: 84 کیلو بایت

مقاله بررسی تعریف،كاربرد و مزایای ریخته گری در 132 صفحه ورد قابل ویرایش

چکیده

در این مقاله مراحل و تاریخچه ریخته گری، روشهای تولید قطعات، مهمترین مزایای روش ریخته گری، محصولات ریخته گری، قالب های ریخته گری، مدل pattern و … را مطرح می کند.

ریخته گری یکی از روشهای شکل دادن قطعات فلزی است که شامل تهیه مذاب از فلز مرد نظر و ریختن آن در محفظه ای بنام قالب است، به گونه ای که پس از انجماد مذاب، شکل، اندازه و خواص مورد نظر تامین شود. بنابراین با توجه به این تعریف یک فرآیند ریخته گری را باید مجموعه ای از عملیات ذوب، تهیه قالب و ریختن مذاب دانست .

در تهیه قطعات صنعتی هر چند ریخته گری بدلیل ویژگی های آن از نقطه نظر تکنولوژی و جنبه‌های اقتصادی به عنوان یک روش مهم و اساسی مطرح است، با این وجود برای بدست آوردن شناختی واقعی و همه جانبه، لازمست تا ویژگیهایی این روش در کنار سایر روشهای موجود در تولید قطعات مورد بررسی و اندیابی قرار گیرد.

بطور کلی روشهای اصلی شکل دادن فلزات را علاوه بر ریخته گری به چهار گروه عملیات مکانیکی، اتصالی، ماشینکاری و متالوژی پودر تقسیم می نمایند.

عملیات مکانیکی با روش مکانیکی شکل دادن ، Mechanical procen

در این عملیات مواد جامد فلزی موسوم به شمش تحت روشهایی نظیر چکش کاری یا تپک کاری، نورد و اکستروژن ( فشار کاری) شکل داده می شود.

در حقیقت در این روش ها یک قطعه فلزی تحت تأثیر ضربه یا نیروی اعمالی تغییر شکل پلاستیک می دهد.

این شکل دادن با توجه به جنس فلز و شرایط کاربردی آن ممکن است به صورت سرد یا گرم انجام شود.

هر گاه کار مکانیکی در درجه حرارتهای پانیمتر از ?/? نقطه ذوب بر حسب درجه کلوین انجام شود به آن کار سرد گویند، در حالیکه انجام کار مکانیکی در درجه حرارتهای بالاتر از حد ذکر شده، کارگر نامیده می شود.

واژه های کلیدی: ریخته گری، قالب، مدل، ماسه
فهرست مطالب

تعریف ریخته گری ?
مراحل ریخته گری ?
تعریف ریخته گری ?
تاریخچه ریخته گری ?
دوره برنز ( مس و مفرغ) ?
دوره آهن ??
دوره تاریک صنعتی ??
دوره رنسانس صنعتی ??
دوره انقلاب صنعتی ??
روشهای تولید قطعات ??
اکستروژن ??
محدودیت ها و مزایا ??
روش متالوژی پودر. Powder Metallurgy ??
مهمترین مزایای روش ریخته گری ??
محصولات ریخته گری ??
انواع شمش ??
قالب های دائمی ??
قالب های موقت ??
مشخصات عمومی قالبهای موقت ??
قابلیت شکل پذیری ??
دیر گدازی ??
داشتن استحکام مکانیکی ??
داشتن انتقال حرارت مطلوب ??
قابلیت متلاشی شدن ??
ماسه ??
ماسه طبیعی ??
معدن ماسه ??
ماسه مصنوعی ??
ماسه سیلیسی نامرغوب ??
ماسه های دیرگداز غیر سیلیسی ??
انبساط حرارتی ماسه های قالبگیری مختلف ??
کنترل شکل و اندازه ذرات ماسه ??
چسب ها Binders ??
تقسیم بندی چسبها از لحاظ ترکیب شیمیایی ??
بهبود قابلیت از هم پاشیدگی ??
افزودنیهای مخصوص در مخلوط های قالبگیری ??
درصد اجزای تشکیل دهنده ??
احیاء و آماده سازی ماسه ??
روشهای احیا ماسه ??
آماده سازی ماسه ??
خاکها ??
انواع مدل ??
مدلهای چوبی ??
مدلهای فلزی ??
مدلهای پلاستیکی ??
مدلهای طبیعی ??
مدل یک تکه ??
مدلهای صفحه ای ??
مدل با قطعه آزاد ??
مدل با سیستم راهگاهی ??
مدلهای مخصوص ??
اضافه مجاز انقباضی ??
میزان اضافه مجاز ماشینکاری آلیاژ های صنعتی ??
اضافه مجاز ماشینکاری ??
شیب مجاز ??
اختلاف مجاز ( تلرانس) ??
اشتباه در مجاز ??
ریخته گری در قالبهای ماسه ای تر ??
روشهای قالبگیری با ماسه تر ??
ریخته گری در قالب ماسه ای خشک ??
قالب های خشک شده سطحی ??
قالبهای ماسه ای کاملاً خشک ??
ریخته گری در قالبهای Co2 ??
واکنش سیلیکات سدیم و دی اکسید کربن ??
مخلوط ماسه قالبگیری ??
ریخته گری در قالبهای پوسته ای ???
عملیات تهیه قالب و ماهیچه ???
روش ریخته گری دقیق Investment casting ???
مزایای روش ریخته گری دقیق ???
انواع روشهای ریخته گری دقیق ???
مواد نسوز در فرآیند پوسته ای دقیق ???
ریخته گری در قالبهای دائمی ???
تقسیم بندی روشهای ریخته گری در قالبهای دائمی ???
ریخته گری در قالبهای ویژه ( روش ثقلی)Grarity Die Cootiney ???
روشهای ریخته گری ویژه ???
عمر قالب ???
درجه حرارت بار ریزی ???
ریخته گری تحت فشار pressure Die Casting ???
روش ریخته گری تحت فشار با محفظه سرد ???
ریخته گری تحت فشار کم ???
ریخته گری گریز از مرگز Centrifugal Casting ???
روشهای بارریزی ???
ریخته گری گریز از مرکز عمومی ???
پوشش دادن قالب و ماهیچه ???
انواع مواد پوششی در قالب های موقت ???
روشهای پوشش دادن قالب و ماهیچه ???
مشخصات مواد پوششی ???
عمر مواد پوششی ???
مواد پوششی برای آلیاژ های مختلف ریختگی ???
مواد پوششی در آلیاژ های مختلف مثل Cu Mg Al ZA ???
کوره های ذوب ???
کوره های تشعشی: Rever bratory Farnace ???
کوره های الکتریکی Electric Furnace ???
کوره های القایی Inducticn Furnace ???
عملیات کیفی ???
منابع تولید گاز در مذاب ???
اتمی مولکولی ???
بعنوان مثال تأثیر عناصر آلیاژی را بر انحلال هیدروژن در آلومینیم ???
عوامل موثر در میزان مکهای گازی ???
روشهای کمی ???
روش استخراج در خلاء ???
روشهای گاززدایی ???
روشهای مکانیکی ???
روش گار زدایی با استفاه از کاهش فشار خارجی ???
استفاده از گازهای فعال ???

تعریف ریخته گری:

ریخته گری یكی از روشهای ساخت و شكل دادن فلزات است.

در این روش یك فلز یا آلیاژ ابتدائاً ذوب شده و در درون یك محفظه تو خالی بنام قالب كه تقریباً به شكل قطع ساخته شده ریخته می شود، بنحوی كه پس از پایان انجماد شكل، ابعاد، تركیب شیمیای و خواص مورد نظر بدست آید.

مراحل ریخته گری:

1) طراحی مكانیكی طرح مدل سازی انتخاب روش مناسب

طراحی ریخته گری

قالبی كه برای ساخت ماهیچه استفاده می شود.

2) ساخت قالب و ماهیچه

ریخته گری عملیات تخلیه و تمیز كاری( عملیات حرارتی و ساچمه زنی و…) بازرسی و آزمایش قطعات بسته بندی و ارسال

3) ذوب فلز

تعریف ریخته گری

ریخته گری یكی از روشهای شكل دادن قطعات فلزی است كه شامل تهیه مذاب از فلز مرد نظر و ریختن آن در محفظه ای بنام قالب است، به گونه ای كه پس از انجماد مذاب، شكل، اندازه و خواص مورد نظر تامین شود. بنابراین با توجه به این تعریف یك فرآیند ریخته گری را باید مجموعه ای از عملیات ذوب، تهیه قالب و ریختن مذاب دانست بطور كلی مراحل ریخته گری یك قطعه قلزی به طور ساده در ذیل نشان داده شده است.

تاریخچه ریخته گری:

براساس تحقیقات باستان شناسان، ریخته گری فلزات، یك تكنولوژی ماقبل تاریخ بوده و قدمتی شش هزار ساله دارد.

اولین اشیای ساخته شده از فلزات بصورت قطعات كوچك چكش كاری شده از مس هستند كه قدمت آنها به هزار سال قبل از میلاد مسیح می رسد.

از نقطه نظر تاریخی، ریخته گری را می توان به چند دوره تقسیم نمود كه در اینجا بشرح آنها به اختصار می پردازیم.

دوره برنز ( مس و مفرغ)

این دوره در خاور نزدیك و در حدود 3000 سال قبل از میلاد مسیح آغاز شده اولین اشیای برنزی كشف شده بصورت آلیاژی از مس و آرسنیك ( حدود 4 درصد) بوده است.

موضوع مهم در این دوره، پی بردن به تأثیر قلع بر خواص مس است كه باعث افزایش استحكام و سختی آن می شود. این موضوع هنوز در پرده ای از ابهام است. زیرا نه سنگ معدن مس حاوی قلع بوده و نه اینكه معدن مس و قلع نزدیك هم قرار دارد كه آلیاژ شدن آنها بطور اتفاقی امكان پذیر باشد.

در ارتباط با چگونگی پیدایش ریخته گری، میتوان اینگونه تحلیل كرد كه با توجه به اینكه پتك كاری قبل از ریخته گری مورد استفاده بشر قرار گرفته است، ممكن است در هنگام تپك كاری عمل ذوب بطور اتفاقی صورت گرفته باشد كه با مشاهده این امر موارد ذیل در ذهن بشر القا شده است:

-مذاب باید در محفظه ای ریخته شود تا شكل پیدا كند.

– برای تهیه مذاب باید كوره های تپك كاری بگونه ای تغییر یابد كه همواره تهیه مذاب در آن امكان پذیر باشد.

– برای تهیه مذاب و نگه داری آن باید ظرفی نسوز تهیه كرد ( بوته)

با توجه با اینكه بشر قبلاً به نسوز بودن بعضی از خاكها پی برده و نیز به دلیل آشنایی با حرفه سفالگری، به نحوه شكل دادن خاك نیز دست یافته بود، لذا به نیازهای اول و سوم او پاسخ داده شد. نیاز دوم یعنی ساخت كوره های ذوب نیز احتمالاً با سنگ چین و گل اندود نمودن و قرار دادن محلی برای عبور هوا برآورده شد.

از مسائل مهم در این ارتباط موضوع و مش بود كه این امر به تبدیل سیستم دم از حالت فوت كردن به استفاده از كسیه دم و سپس به موتورهای تنظیم هوا و فشار مناسب كه امروزه كاربرد فراوانی دارد منتهی شد.

بطور كلی در دوران مفرغ، ساخت قطعاتی نظیر تبر، نیزه، كارد، سپر، ظروف و شیشه و نیز ساخت آلیاژ هایی از عناصری نظیر قلع ( تا 18 درصد) و سرب ( تا 11 درصد) و آرستیك و روی معممل بوده است.

دوره آهن:

براساس كاوش باستان شناسان در چین قطعاتی چون مربوط به 600 سال قبل از میلاد مسیح بدست آمده است اما پیدایش آهن به عنوان یك دوره به دو هزار سال قبل از میلاد مسیح می رسد.

نام آهن در زبان پهلوی به عنوان آلیسن در زبان آلمانی آیزن و در انگلیسی آیرن نامیده می شود و احتمالاً در هنگام ذوب مس به آن پی بردند.

در هر حال در حدود 1200- 1000 سال قبل از میلاد آهن تقریباً ماده اصلی اغلب سلولها و ابزارها را تشكیل می داد.

با توجه به نقطه ذوب بالا ( 1539 بدیهی است كه ذوب مستقیم آهن تا قرن نوزدهم میلادی امكانپذیر نبود ولی در اواسط دوره آهن بر اثر افزایش كربن و پائین آمدن نقطه ذوب ( در چدنها) قطعات ریخته گری نیز بوجود آمد.

نكته مهم دیگر كشف عملیات حرارتی بر روی آهن بود كه از اهمیت خاصی برخوردار است. در مصر شمشیری و تبری با پوشش خاك نسوز بدست آمده كه لبه آن حاوی 9 .0 درصد كربن و قسمتهای میانی آن تقریباص فاقد كربن است.

در این اشیاء سختی در قسمت میانی معادل 70 BHN و در قسمت لبه معادل 440 BHN می باشد البه در این دوره جدیدی در آلیاژ های مس نیز بوجود آمده و آلیاژ های مختلفی از مس و قلع ساخته شد.

از آلیاژهای دیگر ساخته شده در اواخر این دوره آلیاژ برنج ( مس و روی) و نیز بنجهای قلع دار است. پیدایش روشهای جدید ریخته گری و قالبگیری را نیز باید از دیگر تحولات دوره آهن دانست در این دوره شواهدی وجود دارد كه از قالبهای سرامیكی نیز استفاده بعمل آمده است.

از عجایب این دوره ساخت مجسمه رودیس است كه در سال 290 قبل از میلاد ساخته شد و جزء عجایب هفتگانه محسوب می شود.

این مجسمه 32 متری كه از قطعات مختلف برنز ریختگی ساخته شده و وزنی حدود 390 تن داشت، طی زمین لرزه ای در دریای مدینترانه غرق شد.

دوره تاریك صنعتی:

در سده های سوم و چهارم بعد از میلاد تا قرن چهاردهم میلادی یك دوره ركود در صنایع و از جمله ریخته گری بوجود آمد.

البته، با توجه به حاكمیت كلیسا و تزئینات آن نظیر ناقوس و شمعدانی روشهای جدیدی در ریخته گری ابداع شد. ( قالب گری با فرمان)

دوره رنسانس صنعتی:

این دوره از سال 1500 میلادی تا 1700 میلادی بطول انجامید. در این دوره صنعت توپ ریزی بنا نهاده شد. ابتدا لوله هیا توپ از برنز و سپس از چدن ساخته شد.

در این دوره علاوه بر تكامل كوره ها و سیستمهای دمشی، از نظر مواد اولیه باید آغاز استفاده از ماسه و روش قالبگیری در ماسه محسوب كرد.

ظهور چدن و فولاد به عنوان مواد اولیه در ساخت قطعات و لوازم دفاعی و خانگی و همچنین استفاده از آلیاژ های متفاوت مس نظیر برنز و برنج و عناصر دیگر و استفاده از طلا در ساخت زینت آلات و قطعات تزئینی از مظاهر دیگر این دوره است.

در این دوره متالوژی بعنوان یك علم مستقل، پیشرفت كرد و نظریه ساختاری بطوری فلزات و سایر مواد توسط هارلكویكر ( Harsoeker) فرانسوی اعلام شد.

قرن هفدهم قرن دستیابی به ابزاری جدید بنام میكروسكوپ بود كه تحولی جدی در علم متالوژی ایجاد كرد.

قابلیت شكل پذیری:

هر چند در ساخت قالب، نحوه شكل دادن به یك مخلوط قالبگیری با توجه به ماهیت این مواد متفاوت است، با این وجود دارا بودن قابلیت شكل پذیری و حفظ نمودن آن، بعنوان مهمترین ویژگی مواد قالب گیری در تمام روشها مطرح می باشد.

در میان مواد قالبگیری مورد استفاده در ساخت قالبهای موقت ماسه قالبگیری بدلیل برخورداری از سهولت شكل پذیری در اثر كوبیدن بعنوان قدیمی ترین روش قالبگیری بخش مهمی از فرآیند ریخته گری را به خود اختصاص داده است.

دیر گدازی:

با توجه به اینكه مذاب فلزات مختلف از درجه حرارت ریختن تا انجماد كامل در داخل محفظه قالب و در تماس مستقیم با مواد قالب قرار دارند لذا دیرگدازی یا نسوز بودن این مواد جهت تولید قطعه ای سالم امری لازم و ضروری است قابل ذكر اینكه این دیر گدازی هم ذرات ماسه و هم مواد چسب را شامل می شود.

داشتن استحكام مكانیكی

یك مخلوط مواد قالبگیری پس از شكل گیری باید از استحكام كافی برخوردار باشد بگونه ای كه هنگام جابجایی و انتقال به مجل بارریزی شكل ایجاد شده را حفظ نماید.

همچنین در موقع بارزیزی، در اثر تماس با مذاب داغ مقاومت خوبی را در مقابل سایش و فرسایش از خود نشان داده و در اثر فشار فلز دستیابی ( فشار مذاب) Metalostatic pressure دچجار تغییر شكل و ابعاد نگردد.

معانی گوناگون استحكام در طی مراحل مختلف قالبگیری و ذوب ریزی

· طبق تعریف دیر گدازی عبارتست از توانایی ماسه برای تحمل دمای بالا بدون سوختن یا تجزیه شدن

حداقل تغییرات ابعادی در درجه حرارتهای بالا:

با توجه به اینكه جداره های محفظ قالب در اثر مجاورت با مذاب داغ، بسرعت گرم می شوند از اینرو در صورتی كه مواد قالب از ضریب انبساطی مطلوب برخوردار نباشند، سطح قالب در اثر انبساط سریع، دچار بادگردگی، ترك و یا شكست می شوند.

·قابلیت نفوذ گاز

علاوه بر هوای موجود در محفظه قالب،‌ مخلوط مواد قالبگیری نیز اغلب حاوی اجزایی است كه در مجاورت مذاب تبخیر شده به صورت گاز بخشی از محفظه قالب را اشغال می كند.

با توجه به این امر، جهت خروج گازهای موجود، وجود منافذ كافی در بدنه قالب لازم و ضروری است.

داشتن انتقال حرارت مطلوب

بطور كلی انجاما فلز مذاب در داخل قالب مستلزم خروج حرارت مذاب از طریق مواد قالب می باشد. با توجه به اینكه سرعت این انتقال حرارت نقش بسیار موثری را در مشخاصت و خواص متالوژیكی و مكانیكی قطعه ریختگی بر عهده دارد، از این رو، در انتخاب مواد قالب گیری به این نكته مهم باید توجه شود.

· توانایی ماده تشكیل دهنده قالب در عبور دادن بخار از طریق دیواره ها.‌نفوذ پذیری یا قابلیت نفوذ گاز نامیده می شود.

قابلیت متلاشی شدن:

با توجه به اینكه قالبها باید پس از ریختن مذاب و جامد شدن آن تخریب گردند، بنابراین مخلوط مواد قالبگیری بایستی به هنگام خروج قطعه از قالب به خوبی از هم پاشیده شود

اقتصادی بودن:

ارزش اقتصادی همواره به عنوان عاملی مهم در كنار یك تولید مهندسی بشمار می رود. به همین جهت قابل دسترس بودن مواد قالب در طبیعت و نیز قابلیت استفاده مجدد از این مواد از مشخصات مهم قالبهای موقت می باشد.

واژه استحكام در مورد قالبهای موقت در طی مراحل مختلف قالبگیری و ذوب ریزی از اهمیت ویژه ای برخوردار بوده و از این دید معانی گوناگونی نیز دارد:

استحكام تر: استحكام قبل از خودگیری نهایی ( یا قبل از خشك كردن قالب)

استحكام خشك: استحكام بعد از خشك كردن قالب یا خودگیری چسب

استحكام گرم: استحكام در هنگام ریخته گری و در حین انجماد قطعه

استحكام باقیمانده : استحكام پس از پایان انجماد قطعه، در حین سرد شدن تا دمای اطاق

معمولاً هر چه استحكام تر بالاتر، استحكام خشك بالاتر، استحكام گرم بالاتر و استحكام باقیمانده كم باشد بهتر است.

استحكام باقیمانده كم

از نظر تخریب قالب

از نظر جلوگیری از بروز ترك در قطعه

ماسه:

همانگونه كه اشاره شد یكی از اجزای اصلی در مخلوط ماسه قالبگیری، ذرات دیرگداز موسوم به ماسه است. بطور كلی ماسه ذرات ریزی از مواد معدنی می باشد كه قطر آن در محدودة mm ( 2-5%) تغییر می كند.

ذراتی كه قطر آنها كمتر از 2% میلیمتر است، طبق تعریف خاك نامیده می شوند. مخلوط ماسه قالبگیری كه در ریخته گری مورد استفاده قرار می گیرد براساس ماهیت آن به دو دسته تقسیم بندی می شوند.

1- ماسه طبیعی 2- ماسه مصنوعی

ماسه طبیعی:

این ماسه ها كه جزء دیرگداز آن سیلس Sioz می باشد درطبیعت به صورت مخلوطی با خاك رس ( چسب طبیعی) یافت می شود.

میزان خاك رس در ماسه هایی كه در ریخته گری مورد استفاده قرار می گیرند بین 20-8 درصد تغییرات است علاوه بر خاك رس تركیبات دیگری نیز معمولاص در این ماسه ها وجود دارند كه عبارتند از: اكسید آلومینیم Al2o3 ، اكسید آهن Fe203، اكسید تیتانیم Tioz، اكسید كلسیم cao اكسید منیزیم Mgo، اكسید پتاسیم k20 و اكسید سدیم Na­2o

مدلهای پلاستیكی:

این مدلها از انواع رزینها ساخته می شوند. زرینهایی كه برای ساخت مدلهای پلاستیكی بكار می روند از استحكام فشاری بیشتری ( در مقایسه با مدلهای چوبی)، مقاومت خوب در مقابل مواد شیمیایی و نیز چسبندگی كم به مواد قالبگیری برخوردارند. از ویژگی های مهم این مواد در ساخت مدلها می توان به پایداری ابعادی عالی و نیاز به مهارت كمتر در مقایسه با ساخت مدلهای فلزی اشاره نمود.

برای ساخت مدلهیا پلاستیكی، ابتدا یك قالب گچی مناسب از روی مدل اولیه چوبی تهیه می شود. معمولاً پس از ریختن مواد به داخل قالب، برای خودگیری و سخت شدن آنرا بمدت 2 الی 12 ساعت در درجه حرارت اطاق قرار می دهند.

حداكثر استحكام پس از مدت یك هفته در درجه حرارت اتاق و یا 2 الی 3 ساعت در درجه حرارت 70-50 بدست می آید.

همچنین به منظور كاهش زمان خودگیری و یا كاهش هزینه ها، زرینها را با مواد پر كننده ای مانند مواد معدنی و یا پودر فلزات مخلوط نموده و بكار می برند.

برای ساخت مدلهای پلاستیكی از روش پوسته ای ماهیچه دار نیز استفاده می گردد. در این روش، مغری یا ماهیچه از چوب و یا مواد دیگر تهیه می گردد و سپس با قرار دادن این مغزی در قالب، مواد رزینی مناسب بداخل آن ریخته می شود بدین ترتیب با كاهش یافتن مواد رزینی، هم هزینه آن پایین می آید و هم انقباض زیاد مواد زرینی جلوگیری می گردد

این روش بیشتر برای ساخت مدلهای پلاستیكی با اندازه متوسط و اشكال ساده استفاده می شود.

دسته بندی مدلها براساس شكل ظاهری آنها:

مدلها را می‌توان از نظر میزان تشابه آنها با شكل قطعه ریختگی ( نقشه مكانیكی) به دو گروه اصلی تقسیم نمود.

مدلهای طبیعی:

این نوع مدلها، از نظر شكل ظاهری كاملاً شبیه قطعه ریختگی هستند و می توان قسمت های داخلی و خارجی قطعه را با استفاده از یك مدل، در داخل مواد قالبگیری (ماسه) تهیه نمود.

مدلهای ماهیچه دار:

این نوع مدلها اصولاً شباهت چندانی به قطعه مورد نظر نداشته و دارای زائد هایی بنام تكیه گاه یا ریشه ماهیچه برای نگه داری ماهیچه در محفظه قالب هستند و نمی توان با استفاده از یك مدل قسمتهای داخلی آنرا قالبگیری نمود. این قسمت توسط جعبه ماهیچه ساخته می شود.

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


کاملترین فایل مقاله بررسی جوشكاری با اكسی استیلن

مقاله بررسی جوشكاری با اكسی استیلن در 14 صفحه ورد قابل ویرایش

دسته بندی: ساخت و تولید

فرمت فایل: doc

تعداد صفحات: 14

حجم فایل: 18 کیلو بایت

مقاله بررسی جوشكاری با اكسی استیلن در 14 صفحه ورد قابل ویرایش

تعریف جوشكاری

جوشكاری یكی از فرآیندهای فلز كاری است كه به وسیله آن فلزات را بهم جوش می‌دهند. فلزات را تا نقطه ذوب حرارت می دهند تا قسمتهای ذوب شده بهم متصل شوند.
روشهای مختلف جوشكاری و برشكاری

معمول ترین انواع جوشكاری: جوشكاری با گاز، جوشكاری با برق، جوشكاری با برق و گاز و جوشكاری مقاومتی است. اقسام دیگر آن جوشكاری با هیدروژن اتمی، جوشكاری با ترمیت، جوشكاری سرد، جوشكاری با ماوراء صوت، جوشكاری با اشعه الكترون، جوشكاری با لیزر و جوشكاری با پلاسما است.

دو نوع معمول برش، برش با گاز و برش با برق است. در اینجا جوشكاری با استیلن را شرح می دهیم زیرا:

1. اصول جوشكاری با استیلن كه شامل اصول مهم انواع دیگر جوشكاری نیز هست.

2. جوشكاری بااستیلن معمولترین جوشكاری دستی است، آهسته تر انجام می شود و تنظیم آن ساده تر از اقسام دیگر است.
جوشكاری با گاز

یكی از معمولترین اقسام جوشكاری استفاده از گاز برای تولید حرارت است. در اینجا از احتراق گاز در مجاورت اكسیژن هوا استفاده می شود. در مورد استفاده از اكسیژن می توان از اكسیژن كپسول و یا از اكسیژن هوا استفاده نمود. در این روش اكسیژن به سه طریق ممكن است با گاز تركیب شود.

1. از هوای اطراف كه:

الف. در آن درجه حرارت پایین است.

ب. كار كاملاً تمیز نیست.

ج. خود مقدار حرارت هم كم است.

2. هوا از سوراخهای مشعل وارد آن شده كه:

الف. در آن درجه حرارت بالاتر است.

ب. كار تمیزتر از روش اول است.

ج. خود مقدار حرارت بیشتر است.

3. اكسیژن كپسول با فشار وارد گاز قبل از احتراق می شود كه:

الف. درجه حرارت بسیار بالاتر است.

ب. خیلی تمیز است.

ج. بیشترین مقدار حرارت را پس می دهد.
شعله های جوشكاری

جوشكاری با گاز هنر اتصال فلزات مختلف بهم است و با آن سطوح مجاور را ذوب نموده و بهم می‌چسبانند.

یك شعله متمركز خیلی شدید در نقطه ای روی فلز وارد می كنیم تا ذوب شده و حوضچه مایع درست شود. دو قسمت مایع بهم متصل شده، كنار دو قطعه بهم وصل می‌شود. این عمل باید طوری انجام شود كه دو فلز صدمه نبینند.

شعله جوشكاری باید دارای خواص زیر باشد:

الف. درجه حرارت شعله باید باندازه كافی بالا باشد تا فلز ذوب شود.

ب. مقدار حرارتیكه تلف می شود توسط شعله تامین می گردد.

ج. شعله نباید فلز را بسوزاند (آنرا اكسیده كند).

د. شعله نباید ناخالصی هائی روی فلز رسوب دهد.

هـ. شعله نباید فلز را با دوده بپوشاند.

و. شعله نباید تولید گازهای مسموم نماید.

مقدار حرارت تولید شده با تنظیم حجم گاز مصرف شده، تعیین می شود. برای اینكه حرارت بیشتری تولید شود سوراخ سر مشعل را گشادتر و فشار گاز را بیشتر انتخاب می كنیم. در نتیجه گاز بیشتری از سوراخ خارج خواهد شد. هرچند اگر از سر مشعل بزرگتر یا كوچكتر استفاده كنیم، درجه حرارت تغییر نخواهد كرد.

باید خاطر نشان كرد كه مقدار حرارت تولید شده و در نتیجه ضخامت فلزی كه می‌خواهیم جوش دهیم به مقدار گاز سوختی در واحد زمان بستگی دارد. پس مقدار حرارت باندازه سوراخ سر مشعل بستگی خواهد داشت.

در صنعت چند نوع جوشكاری و برش كاری با گاز معمول است:

1. استیلن- اكسیژن 2. هیدروژن- اكسیژن 3. گاز طبیعی یا صنعتی- اكسیژن 4. گاز مایع- اكسیژن.
شعله اكسی استیلن

شعله ممكن است دارای اكسیژن زیاد یا كم باشد كه خوب نیست و در آن صورت نسبتهای مخلوط دو گاز اكسیژن و استیلن نامناسب است. اگر اكسیژن خیلی زیاد باشد، شعله اكسید كننده و اگر استیلن زیاد مصرف شود، شعله احیا كننده خواهد شد.

شعله‌ی صحیحی را كه به فلز حرارت می دهد و آنرا اكسیده یا احیاء نكند شعله خنثی می نمامند. شعله خنثی وقتی حاصل می شود كه نسبت گاز استیلن و اكسیژن متناسب باشد. در شعله خنثی دو گاز با هم تركیب شده، اكسیژن با كربن و هیدروژن گاز استیلن ممزوج و حرارت لازم تولید می شود. لازم به یادآوری است كه گازهای حاصل بی ضرر هستند.

می توان به زبان شیمی چنین نوشت: استیلن+ اكسیژن= گاز كربنیك+ آب+ حرارت

دو گاز تولید شده یعنی گاز كربنیك و بخار آب سمی نیستند.

اكسیژن موجود در هوای اطراف شعله برای تكمیل احتراق مصرف می شود و این بدان معنی است كه وقتی در شكاف یا گوشه ها بخواهیم جوشكاری كنیم، بطوریكه هوا نتواند به شعله برسد، اكسیژن بیشتری از كپسول را باید بشعله برسانیم. اگر نسبت مخلوط دو گاز مناسب نباشد فرم ظاهری شعله این اشكال را روشن خواهد كرد. آخر سر نیز، شعله خنثی را از وضع فلز ذوب شده می توان امتحان كرد.

مواد زائد از دو راه وارد شعله جوشكاری می شوند:

الف. ممكن است گازها مواد اضافی داشته باشند.

ب. دستگاه تمیز نباشد.

گاز باید همیشه از كیفیت خوبی برخوردار باشد. خلوص گاز را كارخانه سازنده مشخص كرده و باید در نظر داشت كه گرمای شعله استیلن- اكسیژن خنثی به 5600 درجه فارنهایت می رسد. اگر اكسیژن زیادتر باشد درجه حرارت به كمی بالاتر هم ممكن است برسد.
دستگاه جوشكاری اكسی استیلن

قبل از بحث در طرز كار جوشكاری، بهتر است اطلاعاتی درباره دستگاههای جوشكاری پیدا كنیم تا امكانات و حدود كار این دستگاه‌ها مشخص شود.

در اصل، دستگاه جوشكاری اكسی استیلن شامل وسایل زیر است:

یكی منبع تامین دو گاز اكسیژن و استیلن و دستگاهی كه در آن، دو گاز بدون خطر با هم مخلوط شده و به مشعل می رسند. در آنجا گازهای مزبور مشتعل شده و درجه حرارت زیادی ایجاد می شود. در اینجا دستگاهی را كه بیشتر بكار می رود توضیح می‌دهیم:

الف. كپسولهای گاز: یكی كپسول اكسیژن و دیگری كپسول استیلن.

ب. تنظیم های فشار و فشارسنج ها: تنظیم فشار اكسیژن و تنظیم فشار استیلن.

ج. لوله اكسیژن و لوله استیلن.

د. مشعل جوشكاری.

معمولاً دو نوع مشعل جوشكاری استیلن و اكسیژن به كار می رود:

1. مشعل از نوع فشار مساوی 2. مشعل از نوع تزریقی در نوع اول همانطور كه از اسم آن پیداست گازهای اكسیژن و استیلن هر دو فشاری مساوی یا تقریباً نزدیك بهم دارند. این نوع مشعل ها خیلی بیشتر بكار می روند. در مشعل نوع تزریقی، فشار گاز استیلن نسبتاً كم و فشار اكسیژن خیلی بالاتر است.
تنظیم مشعل

بطور كلی و با استفاده از خصوصیات شعله، مشعل را می‌توان با توجه به موارد زیر تنظیم نمود:

1- شعله خنثی

2- شعله احیاء كننده

3- شعله اكسید كننده

بطور كلی شعله مطلوب، شعله خنثی است. اگرچه در جوشكاری آلومینیم، لحیم سخت و برخی عملیات دیگر كه امكان اكسیداسیون فلز در داخل جوش وجود دارد، بهره‌گیری از شعله‌ای كه كمی حالت احیاء كنندگی داشته باشد، معمول است. با وجود آنكه در بعضی موارد شعله باید كمی احیاء كننده باشد ولی شعله خنثی در همه جا بخوبی مورد استفاده قرار می‌گیرد، در مدت زمان طولانی بعلت اینكه فشار گازها كمی تغییر می‌كند مشكل بتوان شعله كاملاً خنثی در دسترس داشت. امكان دارد شعله خنثی كمی اكسید كننده یا احیاء كننده شود. بنابراین برای اینكه شعله اكسید كننده نشود بهتر است كمی احیاء كننده باشد.

در حال جوشكاری ممكن است گاهگاهی مشعل، برگشت سوخت داشته باشد. این انفجار كوچك شعله ممكن است در اثر شرایط مختلفی ایجاد شود كه می‌توان از آن جلوگیری كرد. علت عمده آن در اثر اشتعال پیشرس گازها است. البته علل دیگری هم ممكن است وجود داشته باشد كه عبارتند از:

1- خروج گازها از سوراخ سر مشعل خیلی آهسته بوده و فشار گازها خیلی كم و متناسب با قطر سوراخ سر مشعل نیست. انتشار شعله در گازها بیشتر از سرعت خروج گاز بوده كه این عیب را می‌توان با افزایش جزئی فشار گاز اكسیژن و استیلن از بین برد.

2- اثر افزایش زمان جوشكاری، یا اگر جوشكاری در گوشه انجام شود و یا مشعل خیلی نزدیك جوش باشد، سر مشعل گرم می‌شود. برای رفع این عیب سر مشعل را خنك می‌كنیم.

3- داخل سر مشعل ممكن است دوده گرفته یا ذره‌ای از فلز، داخل سوراخ سر مشعل شده باشد. این تكه‌ها گرم شده و باعث اشتعال گاز می‌شوند. برای رفع این عیب بدقت سر مشعل را پاك كنید.

علت دیگر كه خیلی كم اتفاق می‌افتد، این است كه مخروط داخلی در فلز مذاب قرار می‌گیرد. اشتعال عكس وقتی است كه اشتعال برگشت كرده بدستگاه تنظیم برسد. در این حال لوله‌ها، مشعل و دستگاههای تنظیم خراب شده بایستی تعویض یا تعمیر شوند.

دو نوع اشتعال عكس وجود دارد:

1- اشتعال عكس در لوله استیلن، در صورتیكه اكسیژن در جهت عكس جریان استیلن وارد لوله استیلن گردد، مخلوط قابل اشتعال درست شده و انفجار مهیبی ایجاد می‌شود. اگر مسیر عبور مخلوط اكسیژن و استیلن گرفته شود و فشار گاز اكسیژن زیاد باشد، امكان چنین انفجاری فراهم می‌گردد.

2- در داخل لوله اكسیژن، اكسیدهای آلی تشكیل می‌شود. اگر درجه حرارت لوله بنقطه اشتعال برسد ممكن است انفجاری رخ دهد.
خاموش كردم مشعل

اگر جوشكار بخواهد فقط برای چند دقیقه از دستگاه استفاده نكند كافی است شیرهای مشعل را به بندد و مشعل را كنار بگذارد تا دوباره بتواند از آن استفاده كند. در صورتیكه بخواهیم از دستگاه برای مدتی نسبتاً طولانی استفاده نكنیم، توصیه می‌شود دستگاه را كلا مسدود كنیم. روش خاص خاموش كردن دستگاه بترتیب زیر است:

1- شیرهای دستی روی مشعل برا به بندید. بهتر است اول شیر استیلن را به بندید (با این عمل از ایجاد دوده در اثر شعله استیلن جلوگیری می‌شود).

2- شیرهای كپسول را محكم به بندید.

3- شیرهای دستی روی مشعل را باز كنید تا گازها خارج شوند.

4- صبر كنید تا فشار سنج‌های فشار زیاد و كم روی دستگاه تنظیم اكسیژن و استیلن هر دو صفر را نشان دهند.

5- پیچهای تنظیم روی دستگاه تنظیم اكسیژن و استیلن هر دو را كاملاً به بندید.

6- هر دو شیر دستی روی مشعل را به‌بندید (نه محكم) و مشعل را در محل مناسبی آویزان كنید.

مراحل فوق را بریا كلیه دستگاه‌های جوشكاری (هر نوع مشعل از نوع فشار مساوی و نوع تزریقی) یكسان عمل كنید.

جعبه دانلود

برای خرید و دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل